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Preface 

 

There’s an ancient view, still widely held, that what makes human beings special—what 

distinguishes us from the “beasts of the field”—is that we are rational. What does rationality 

consist in? That’s a vexed question, but one possible response goes roughly like this: we manifest 

our rationality by engaging in activities that involve reasoning—making claims and backing them 

up with reasons, acting in accord with reasons and beliefs, drawing inferences from available 

evidence, and so on. 

 

This reasoning activity can be done well and it can be done badly—it can be done correctly or 

incorrectly. Logic is the discipline that aims to distinguish good reasoning from bad. 

 

Since reasoning is central to all fields of study—indeed, since it’s arguably central to being 

human—the tools developed in logic are universally applicable. Anyone can benefit from studying 

logic by becoming a more self-aware, skillful reasoner. 

 

This covers a variety of topics at an introductory level. Chapter One introduces basic notions, 

such as arguments and explanations, validity and soundness, deductive and inductive reasoning; 

it also covers basic analytical techniques, such as distinguishing premises from conclusions and 

diagramming arguments. Chapter Two discusses informal logical fallacies. Chapters Three and 

Four concern deductive logic, introducing the basics of Aristotelian and Sentential Logic, 

respectively. Chapters Five and Six concern inductive logic. Chapter Five deals with analogical 

and causal reasoning, including a discussion of Mill’s Methods. Chapter Six covers basic 

probability calculations, Bayesian inference, fundamental statistical concepts and techniques, and 

common statistical fallacies. 

 

The text is suitable for a one-semester introductory logic or “critical thinking” course. The 

emphasis is on formal techniques and problem solving rather than analytical writing, though 

exercises of the latter sort could easily be incorporated.  

 

A note on tone, style, and content. This book is written by an American teacher whose intended 

audience is American undergraduates; it is based on my lectures, developed over many years. Like 

the lectures, it assumes that some members of the intended audience lack an antecedent interest in 

the subject and may have trouble developing and maintaining enthusiasm to study it. It tries to 

compensate for this by adopting a casual style, using first- and second-person constructions, and 

by shamelessly trafficking in cultural references, lame jokes, and examples involving American 

current events. The result is a logic textbook with a somewhat unusual tone and a sometimes-

narrow cultural perspective. Neither familiarity with the relevant cultural references, nor 

amusement at the lame jokes, is a prerequisite for understanding the material, but I thought it 

prudent to offer an apologia at the outset. Caveat lector. 

 

An acknowledgment of debts. The following books have influenced my teaching, and hence the 

present work: Virginia Klenk’s Understanding Symbolic Logic, John Norton’s How Science 

Works, Ian Hacking’s Introduction to Probability and Inductive Logic, Darrell Huff’s How to Lie 

with Statistics, and Irving Copi and Carl Cohen’s Introduction to Logic. The influence of those 

last two books is particularly profound, as I note throughout this text. I am indebted to all my logic 



viii 

 

teachers over the years: Kurt Mosser, Michael Liston, Mark Kaplan, Richard Tierney, Steve Leeds, 

Joan Weiner, Ken Manders, Mark Wilson, and Nuel Belnap. Thanks to J.S. Holbrook for sending 

me examples of fallacies. For extensive logistical support, I’m indebted to Kristin Miller 

Woodward; I also thank her for arranging financial support through the UW-Milwaukee Library 

and Center for Excellence in Teaching and Learning, who have undertaken a project to encourage 

the development and adoption of open textbooks. My logic students over the years also deserve 

acknowledgment, especially those who have recently served as guinea pigs, learning from earlier 

drafts of this book. Without student feedback, there would be no book. Finally, and most 

importantly, I could not have completed this project without my wife Maggie’s constant support 

and forbearance.  
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CHAPTER 1 

 

The Basics of Logical Analysis 
 

 

 

 

 

 

 

 

 

 

I.  What Is Logic? 
 

In Logic, the object of study is reasoning. This is an activity that humans engage in—when we 

make claims and back them up with reasons, or when we make inferences about what follows from 

a set of statements. 

Like many human activities, reasoning can be done well, or it can be done badly. The goal of logic 

is to distinguish good reasoning from bad. Good reasoning is not necessarily effective reasoning; 

in fact, as we shall see, bad reasoning is pervasive and often extremely effective—in the sense that 

people are often persuaded by it. In Logic, the standard of goodness is not effectiveness in the 

sense of persuasiveness, but rather correctness according to logical rules. 

In logic, we study the rules and techniques that allow us to distinguish good, correct reasoning 

from bad, incorrect reasoning. 

Since there is a variety of different types of reasoning, since it’s possible to develop various 

methods for evaluating each of those types, and since there are different views on what constitutes 

correct reasoning, there are many approaches to the logical enterprise. We talk of logic, but also 

of logics. A logic is just a set of rules and techniques for distinguishing good reasoning from bad. 

There are many logics; the purpose of this book is to give an overview of some of the most basic 

ones. 

So, the object of study in logic is human reasoning, with the goal of distinguishing the good from 

the bad. It is important to note that this approach sets logic apart from an alternative way of 

studying human reasoning, one more proper to a different discipline: psychology. It is possible to 

study human reasoning in a merely descriptive mode: to identify common patterns of reasoning 
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and explore their psychological causes, for example. This is not logic. Logic takes up reasoning in 

a prescriptive mode: it tells how we ought to reason, not merely how we in fact typically do.1 

 

 

II.  Basic Notions: Propositions and Arguments 
 

Reasoning involves claims or statements—making them and backing them up with reasons, 

drawing out their consequences. Propositions are the things we claim, state, assert.  

Propositions are the kinds of things that can be true or false. They are expressed by declarative 

sentences.2 ‘This book is boring’ is a declarative sentence; it expresses the proposition that this 

book is boring, which is (arguably) true (at least so far—but it’s only the first page; wait until later, 

when things get exciting! You won’t believe the cliffhanger at the end of Chapter 3. Mind-

blowing.). 

Other kinds of sentences do not express propositions. Imperative sentences issue commands: ‘Sit 

down and shut up’ is an imperative sentence; it doesn’t make a claim, express something that might 

be true or false; either it’s obeyed or it isn’t. Interrogative sentences ask questions: ‘Who will win 

the World Cup this year?’ is an interrogative sentence; it does not assert anything that might be 

true or false either.  

Only declarative sentences express propositions, and so they are the only kinds of sentences we 

will deal with at this stage of the study of logic. (More advanced logics have been developed to 

deal with imperatives and questions, but we won’t look at those in an introductory textbook.) 

The fundamental unit of reasoning is the argument. In logic, by ‘argument’ we don’t mean a 

disagreement, a shouting match; rather, we define the term precisely: 

Argument = a set of propositions, one of which, the conclusion, is (supposed to be) 

supported by the others, the premises. 

If we’re reasoning by making claims and backing them up with reasons, then the claim that’s being 

backed up is the conclusion of an argument; the reasons given to support it are the argument’s 

premises. If we’re reasoning by drawing an inference from a set of statements, then the inference 

we draw is the conclusion of an argument, and the statements from which its drawn are the 

premises. 

We include the parenthetical hedge—“supposed to be”—in the definition to make room for bad 

arguments. Remember, in Logic, we’re evaluating reasoning. Arguments can be good or bad, 

logically correct or incorrect. A bad argument, very roughly speaking, is one where the premises 

fail to support the conclusion; a good argument’s premises actually do support the conclusion. 

                                                 
1 Psychologists have determined, for example, that most people are subject to what is called “confirmation bias”—a 

tendency to seek out information to confirm one’s pre-existing beliefs, and ignore contradictory evidence. There are 

lots of studies on this effect, including even brain-scans of people engaged in evaluating evidence. All of this is very 

interesting, but it’s psychology, not logic; it’s a mere descriptive study of reasoning. From a logical, prescriptive point 

of view, we simply say that people should try to avoid confirmation bias, because it can lead to bad reasoning. 
2 We distinguish propositions from the sentences that express them because a single proposition can be expressed by 

different sentences. ‘It’s raining’ and ‘Es regnet’ both express the proposition that it’s raining; one sentence does it in 

English, the other in German. Also, ‘John loves Mary’ and ‘Mary is loved by John’ both express the same proposition. 



The Basics of Logical Analysis 3 

 

To support the conclusion means, again very roughly, to give one good reasons for believing it. 

This highlights the rhetorical purpose of arguments: we use arguments when we’re disputing 

controversial issues; they aim to persuade people, to convince them to believe their conclusion.3 

As we said, in logic, we don’t judge arguments based on whether or not they succeed in this goal—

there are logically bad arguments that are nevertheless quite persuasive. Rather, the logical 

enterprise is to identify the kinds of reasons that ought to be persuasive (even if they sometimes 

aren’t). 

 

 

III.  Recognizing and Explicating Arguments 

 

Before we get down to the business of evaluating arguments—deciding whether they’re good or 

bad—we need to develop some preliminary analytical skills. The first of these is, simply, the ability 

to recognize arguments when we see them, and to figure out what the conclusion is (and what the 

premises are). 

What we want to learn first is how to explicate arguments. This involves writing down a bunch of 

declarative sentences that express the propositions in the argument, and clearly marking which of 

these sentences expresses the conclusion. 

Let’s start with a simple example. Here’s an argument: 

You really shouldn’t eat at McDonald’s. Why? First of all, they pay their workers very low 

wages. Second, the animals that go into their products are raised in deplorable, inhumane 

conditions. Third, the food is really bad for you. Finally, the burgers have poop in them.4 

The passage is clearly argumentative: its purpose is to convince you of something, namely, that 

you shouldn’t eat at McDonald’s. That’s the conclusion of the argument. The other claims are all 

reasons for believing the conclusion—reasons for not eating at McDonald’s. Those are the 

premises. 

To explicate the argument is simply to clearly identify the premises and the conclusion, by writing 

down declarative sentences that express them. We would explicate the McDonald’s argument like 

this: 

                                                 
3 Reasoning in the sense of drawing inferences from a set of statements is a special case of this persuasive activity. 

When we draw out reasonable conclusions from given information, we’re convincing ourselves that we have good 

reasons to believe them. 
4 I know, I know. But it’s almost certainly true. Consumer Reports conducted a study in 2015, in which they tested 

458 pounds of ground beef, purchased from 103 different stores in 26 different cities; all of the 458 pounds were 

contaminated with fecal matter. This is because most commercial ground beef is produced at facilities that process 

thousands of animals, and do it very quickly. The quickness ensures that sometimes—rarely, but sometimes—a knife-

cut goes astray and the gastrointestinal tract is nicked, releasing poop. It gets cleaned up, but again, things are moving 

fast, so they don’t quite get all the poop. Now you’ve got one carcass—again, out of hundreds or thousands—

contaminated with feces. But they make ground beef in a huge vat, with meat from all those carcasses mixed together. 

So even one accident like this contaminates the whole batch. So yeah, those burgers—basically all burgers, unless 

you’re grinding your own meat or sourcing your beef from a local farm—have poop in them. Not much, but it’s there. 

Of course, it won’t make you sick as long as you cook it right: 160° F is enough to kill the poop-bacteria (E-coli, etc.), 

so, you know, no big deal. Except for the knowledge that you’re eating poop. Sorry. 
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McDonald’s pays its workers very low wages. 

The animals that go into their products are raised in deplorable, inhumane conditions. 

McDonald’s food is really bad for you. 

Their burgers have poop in them. 

/ You shouldn’t eat at McDonald’s. 

 

We separate the conclusion from the premises with a horizontal line, and we put a special symbol 

in front of the conclusion, which can be read as “therefore.”  

 

Speaking of ‘therefore’, it’s one of the words to look out for when identifying and explicating 

arguments. Along with words like ‘consequently’ and ‘thus’, and phrases like ‘it follows that’ and 

‘which implies that’, it indicates the presence of the conclusion of an argument. Similarly, words 

like ‘because’, ‘since’, and ‘for’ indicate the presence of premises. 

 

We should also note that it is possible for a single sentence to express more than one proposition. 

If we added this sentence to our argument—‘McDonald’s advertising targets children to try to 

create lifetime addicts to their high-calorie foods, and their expansion into global markets has 

disrupted native food distribution systems, harming family farmers’—we would write down two 

separate declarative sentences in our explication, expressing the two propositions asserted in the 

sentence—about children and international farmers, respectively. Indeed, it’s possible for a single 

sentence to express an entire argument. ‘You shouldn’t eat at McDonald’s because they’re a bad 

corporate actor’ gives you a conclusion and a premise at once. An explication would merely 

separate them. 

 

Paraphrasing 

 

The argument about McDonald’s was an easy case. It didn’t have a word like ‘therefore’ to tip us 

off to the presence of the conclusion, but it was pretty clear what the conclusion was anyway. All 

we had to do was ask ourselves, “What is this person trying to convince me to believe?” The 

answer to that question is the conclusion of the argument. 

 

Another way the McDonald’s argument was easy: all of the sentences were declarative sentences, 

so when we explicated the argument, all we had to do was write them down. But sometimes 

argumentative passages aren’t so cooperative. Sometimes they contain non-declarative sentences. 

Recall, arguments are sets of propositions, and only declarative sentences express propositions; so 

if an argumentative passage contains non-declarative sentences (questions, commands, etc.), we 

need to change their wording when we explicate the argument, turning them into declarative 

sentences that express a proposition. This is called paraphrasing. 

 

Suppose, for example, that the McDonald’s argument were exactly as originally presented, except 

the first sentence were imperative, not declarative: 

 

Don’t eat at McDonald’s. Why? First of all, they pay their workers very low wages. 

Second, the animals that go into their products are raised in deplorable, inhumane 

conditions. Third, the food is really bad for you. Finally, the burgers have poop in them. 
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We just switched from ‘You shouldn’t eat at McDonald’s’ to ‘Don’t eat at McDonald’s.’ But it 

makes a difference. The first sentence is declarative; it makes a claim about how things are 

(morally, with respect to your obligations in some sense): you shouldn’t do such-and-such. It’s 

possible to disagree with the claim: Sure I should, and so should everybody else; their fries are 

delicious! ‘Don’t eat at McDonald’s’, on the other hand, is not like that. It’s a command. It’s 

possible to disobey it, but not to disagree with it; imperative sentences don’t make claims about 

how things are, don’t express propositions. 

 

Still, the passage is clearly argumentative: the purpose remains to persuade the listener not to eat 

at McDonald’s. We just have to be careful, when we explicate the argument, to paraphrase the first 

sentence—to change its wording so that it becomes a declarative, proposition-expressing sentence. 

‘You shouldn’t eat at McDonald’s’ works just fine. 

 

Let’s consider a different example: 

 

I can’t believe anyone would support a $15 per hour minimum wage. Don’t they realize 

that it would lead to massive job losses? And the strain such a policy would put on small 

businesses could lead to an economic recession. 

 

The passage is clearly argumentative: this person is engaged in a dispute about a controversial 

issue—the minimum wage—and is staking out a position and backing it up. What is that position? 

Apparently, this person opposes the idea of raising the minimum wage to $15. 

 

There are two problems we face in explicating this argument. First, one of the sentences in the 

passage—the second one—is non-declarative: it’s an interrogative sentence, a question. 

Nevertheless, it’s being used in this passage to express one of the person’s reasons for opposing 

the minimum wage increase—that it would lead to job losses. So we need to paraphrase, 

transforming the interrogative into a declarative—something like ‘A $15 minimum wage would 

lead to massive job losses’. 

 

The other problem is that the first sentence, while a perfectly respectable declarative sentence, 

can’t be used as-is in our explication. For while it’s clearly being used by to express this person’s 

main point, the conclusion of his argument against the minimum wage increase, it does so 

indirectly. What the sentence literally and directly expresses is not a claim about the wisdom of 

the minimum wage increase, but rather a claim about the speaker’s personal beliefs: ‘I can’t believe 

anyone would support a $15 per hour minimum wage’. But that claim isn’t the conclusion of the 

argument. The speaker isn’t trying to convince people that he believes (or can’t believe) a certain 

thing; he’s trying to convince them to believe the same thing he believes, namely, that raising the 

minimum wage to $15 is a bad idea. So, despite the first sentence being a declarative, we still have 

to paraphrase it. It expresses a proposition, but not the conclusion of the argument. 

 

Our explication of the argument would look like this: 

 

Increasing the minimum wage to $15 per hour would lead to massive job losses. 

The policy would put a strain on small businesses that might lead to a recession. 

/ Increasing the minimum wage to $15 per hour is a bad idea. 
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Enthymemes: Tacit Propositions 

 

So sometimes, when we explicate an argument, we have to take what’s present in the 

argumentative passage and change it slightly, so that all of the sentences we write down express 

the propositions that are in the argument. This is paraphrasing. Other times, we have to do even 

more: occasionally, we have to fill in missing propositions; argumentative passages might not state 

all of the propositions in an argument explicitly, and in the course of explicating their arguments, 

we have to make these implicit, tacit propositions explicit by writing down the appropriate 

declarative sentences.  

 

There’s a fancy Greek word for argumentative passages that leave certain propositions unstated: 

enthymemes. Here’s an example: 

 

Hillary Clinton has more experience in public office than Donald Trump; she has a much 

deeper knowledge of the issues; she’s the only one with the proper temperament to lead 

our country. I rest my case. 

 

Again, the argumentative intentions here are plain: this person is staking out a position on a 

controversial topic—a presidential election. But notice, that position—that one should prefer 

Clinton to Trump—is never stated explicitly. We get reasons for having that preference—the 

premises of the argument are explicit—but we never get a statement of the conclusion. But since 

this is clearly the upshot of the passage, we need to include a sentence expressing it in our 

explication: 

 

Clinton has more experience than Trump. 

Clinton has deeper knowledge of issues than Trump. 

Clinton has the proper temperament to lead the country, while Trump does not. 

/ One should prefer Clinton to Trump in the presidential election. 

 

In that example, the conclusion of the argument was tacit. Sometimes, premises are unstated and 

we should make them explicit in our explication of the argument. Now consider this passage: 

 

The sad fact is that wages for middle-class workers have stagnated over the past several 

decades. We need a resurgence of the union movement in this country. 

 

This person is arguing in favor of labor unions; the second sentence is the conclusion of the 

argument. The first sentence gives the only explicit premise: the stagnation of middle-class wages. 

But notice what the passage doesn’t say: what connection there might be between the two things. 

What do unions have to do with middle-class wages?  

 

There’s an implicit premise lurking in the background here—something that hasn’t been said, but 

which needs to be true for the argument to go through. We need a claim that connects the premise 

to the conclusion—that bridges the gap between them. Something like this: A resurgence of unions 

would lead to wage growth for middle-class workers. The first sentence identifies a problem; the 

second sentence purports to give a solution to the problem. But it’s only a solution if the tacit 
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premise we’ve uncovered is true. If unions don’t help raise middle-class wages, then the argument 

falls apart. 

 

This is the mark of the kinds of tacit premises we want to uncover: if they’re false, they undermine 

the argument. Often, premises like this are unstated for a reason: they’re controversial claims on 

their own, requiring a lot of evidence to support them; so the arguer leaves them out, preferring 

not to get bogged down. When we draw them out, however, we can force a more robust dialectical 

exchange, focusing the argument on the heart of the matter. In this case, a discussion about the 

connection between unions and middle-class wages would be in order. There’s a lot to be said on 

that topic. 

 

Arguments vs. Explanations 
 

One final item on the topic of “Recognizing and Explicating Arguments.” We’ve been focusing 

on explication; this is a remark about the recognition side. Some passages may superficially 

resemble arguments—they may, for example, contain words like ‘therefore’ and ‘because’, which 

normally indicate conclusions and premises in argumentative passages—but which are 

nevertheless not argumentative. Instead, they are explanations. 

Consider this passage: 

 

Because female authors of her time were often stereotyped as writing light-hearted 

romances, and because her real name was well-known for other (sometimes scandalous) 

reasons, Mary Ann Evans was reluctant to use her own name for her novels. She wanted 

her work to be taken seriously and judged on its own merits. Therefore, she adopted the 

pen name ‘George Eliot’. 

 

This passage has the words ‘because’ (twice), and ‘therefore’, which typically indicate the 

presence of premises and a conclusion, respectively. But it is not an argument. It’s not an argument 

because it does not have the rhetorical purpose of an argument: the aim of the passage is not to 

convince you of something. If it were an argument, the conclusion would be the claim following 

‘therefore’, namely, the proposition that Mary Ann Evans adopted the pen name ‘George Eliot’. 

But this claim is not the conclusion of an argument; the passage is not trying to persuade us to 

believe that Evans adopted a pen name. That she did so is not a controversial claim. Rather, that’s 

a fact that’s assumed to be known already. The aim of the passage is to explain to us why Evans 

made that choice. The rhetorical purpose is not to convince; it is to inform, to edify. The passage 

is an explanation, not an argument. 

 

So, to determine whether a given passage is an argument or an explanation, we need to figure out 

its rhetorical purpose. Why is the author saying these things to me? Is she trying to convince me 

of something, or is she merely trying to inform me—to give me an explanation for something I 

already knew? Sometimes this is easy, as with the George Eliot passage; it’s hard to imagine 

someone saying those things with persuasive intent. Other times, however, it’s not so easy. 

Consider the following: 

 

Many of the celebratory rituals [of Christmas], as well as the timing of the holiday, have 

their origins outside of, and may predate, the Christian commemoration of the birth of 



8 Fundamental Methods of Logic 

 

Jesus. Those traditions, at their best, have much to do with celebrating human relationships 

and the enjoyment that this life has to offer. As an atheist, I have no hesitation in embracing 

the holiday and joining with believers and nonbelievers alike to celebrate what we have in 

common.5 

 

Unless we understand a little bit more about the context of this passage, it’s difficult to determine 

the speaker’s intentions. It may appear to be an argument. That atheists should embrace a religious 

holiday like Christmas is, among many, a controversial claim. Controversial claims are the kinds 

of claims that we often try to convince skeptical people to believe. If the speaker’s audience for 

this passage is a bunch of hard-line atheists, who vehemently reject anything with a whiff of 

religiosity, who consider Christmas a humbug, then it’s pretty clear that the speaker is trying to 

offer reasons for them to reconsider their stance; he’s trying to convince them to embrace 

Christmas; he’s making an argument. If we explicated the argument, we would paraphrase the last 

sentence to represent the controversial conclusion: ‘Atheists should have no hesitation embracing 

and celebrating Christmas’. 

 

But in a different context, with a different audience, this may not be an argument. If we leave the 

claim in the final sentence as-is—‘As an atheist, I have no hesitation in embracing the holiday and 

joining with believers and nonbelievers alike to celebrate what we have in common’—we have a 

claim about the speaker’s personal beliefs and inclinations. Typically, as we saw above, such 

claims are not suitable as the conclusions of arguments; we don’t usually spend time trying to 

convince people that we believe such-and-such. But what is more typical is providing people with 

explanations for why we believe things. If the author of our passage is an atheist, and he’s saying 

these things to friends of his, say, who know he’s an atheist, we might have just such an 

explanation. His friends know he’s not religious, but they know he loves Christmas. That’s kind 

of weird. Don’t atheists hate religious holidays? Not so, says our speaker. Let me explain to you 

why I have no problems with Christmas, despite my atheism. 

 

Again, the difference between arguments and explanations comes down to rhetorical purpose: 

arguments try to convince people; explanations try to inform them. Determining whether a given 

passage is one or the other involves figuring out the author’s intentions. To do this, we must 

carefully consider the context of the passage. 

 

 

EXERCISES 

 

1.  Identify the conclusions in the following arguments. 

 

(a)  Every citizen has a right—nay, a duty—to defend himself and his family. This is all 

the more important in these increasingly dangerous times. The framers of the Constitution, 

in their wisdom, enshrined the right to bear arms in that very document. We should all 

oppose efforts to restrict access to guns. 

 

                                                 
5 John Teehan, 12/24/2006, “A Holiday Season for Atheists, Too,” The New York Times. Excerpted in Copi and Cohen, 

2009, Introduction to Logic 13e, p. 25. 
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(b)  Totino’s pizza rolls are the perfect food. They have all the great flavor of pizza, with 

the added benefit of portability! 

 

(c)  Because they go overboard making things user-friendly, Apple phones are inferior to 

those with Android operating systems. If you want to change the default settings on an 

Apple phone to customize it to your personal preferences, it’s practically impossible to 

figure out how. The interface is so dumbed down to appeal to the “average consumer” that 

it’s super hard to find where the controls for advanced settings even are. On Android 

phones, though, everything’s right there in the open. 

 

(d)  The U.S. incarcerates more people per capita than any other country on Earth, many 

for non-violent drug offenses. Militarized policing of our inner cities has led to scores of 

unnecessary deaths and a breakdown of trust between law enforcement and the 

communities they are supposed to serve and protect. We need to end the “War on Drugs” 

now. Our criminal justice system is broken. The War on Drugs broke it. 

 

(e)  The point of a watch is to tell you what time it is. Period. Rolexes are a complete waste 

of money. They don’t do any better at telling the time, and they cost a ton! 

 

2.  Explicate the following arguments, paraphrasing as necessary. 

 

(a)  You think that if the victims of the mass shooting had been armed that would’ve made 

things better? Are you nuts? The shooting took place in a bar; not even the NRA thinks it’s 

a good idea to allow people to carry guns in a drinking establishment. And don’t be fooled 

by the fantasy that “good guys with guns” would prevent mass murder. More likely, the 

situation would’ve been even bloodier, with panicked people shooting randomly all over 

the place. 

(b)  The heat will escape the house through the open door, which means the heater will 

keep running, which will make our power bill go through the roof. Then we’ll be broke. 

So stop leaving the door open when you come into the house. 

 

(c)  Do you like delicious food? How about fun games? And I know you like cool prizes. 

Well then, Chuck E. Cheese’s is the place for you. 

 

3.  Write down the tacit premises that the following arguments depend on for their success. 

 

(a)  Cockfighting is an exciting pastime enjoyed by many people. It should therefore be 

legal. 

(b)  The president doesn’t understand the threat we face. He won’t even use the phrase 

“Radical Islamic Terror.” 

 

4.  Write down the tacit conclusion that follows most immediately from the following. 

 

(a)  If there really were an all-loving God looking down on us, then there wouldn’t be so 

much death and destruction visited upon innocent people. 
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(b)  The death penalty is immoral. Numerous studies have shown that there is racial bias in 

its application. The rise of DNA testing has exonerated scores of inmates on death row; 

who knows how many innocent people have been killed in the past? The death penalty is 

also impractical. Revenge is counterproductive: “An eye for an eye leaves the whole world 

blind,” as Gandhi said. Moreover, the costs of litigating death penalty cases, with their 

endless appeals, are enormous. The correct decision for policymakers is clear. 

 

 5.  Decide whether the following are arguments or explanations, given their context. If the passage 

is an argument, write down its conclusion; if it is an explanation, write down the fact that is being 

explained. 

 

(a)  Michael Jordan is the best of all time. I don’t care if Kareem scored more points; I 

don’t care if Russell won more championships. The simple fact is that no other player in 

history displayed the stunning combination of athleticism, competitive drive, work ethic, 

and sheer jaw-dropping artistry of Michael Jordan. [Context: Sports talk radio host going 

on a “rant”] 

(b)  Because different wavelengths of light travel at different velocities when they pass 

through water droplets, they are refracted at different angles. Because these different 

wavelengths correspond to different colors, we see the colors separated. Therefore, if the 

conditions are right, rainbows appear when the sun shines through the rain. [Context: grade 

school science textbook] 

 

(c)  The primary motivation for the Confederate States in the Civil War was not so much 

the preservation of the institution of slavery, but the preservation of the sovereignty of 

individual states guaranteed by the 10th Amendment to the U.S. Constitution. Southerners 

of the time were not the simple-minded racists they were often depicted to be. Leaders in 

the southern states were disturbed by the over-reach of the Federal government into issues 

of policy more properly decided by the states. That slavery was one of those issues is 

incidental. [Context: excerpt from Rebels with a Cause: An Alternative History of the Civil 

War] 

 

(d)  This is how natural selection works: those species with traits that promote reproduction 

tend to have an advantage over competitors and survive; those without such traits tend to 

die off. The way that humans reproduce is by having sex. Since the human species has 

survived, it must have traits that encourage reproduction—that encourage having sex. This 

is why sex feels good. Sex feels good because if it didn’t, the species would not have 

survived. [Context: excerpt from Evolutionary Biology for Dummies] 

 

 

IV.  Deductive and Inductive Arguments 

 

As we noted earlier, there are different logics—different approaches to distinguishing good 

arguments from bad ones. One of the reasons we need different logics is that there are different 

kinds of arguments. In this section, we distinguish two types: deductive and inductive arguments. 
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Deductive Arguments 
 

First, deductive arguments. These are distinguished by their aim: a deductive argument attempts 

to provide premises that guarantee, necessitate its conclusion. Success for a deductive argument, 

then, does not come in degrees: either the premises do in fact guarantee the conclusion, in which 

case the argument is a good, successful one, or they don’t, in which case it fails. Evaluation of 

deductive arguments is a black-and-white, yes-or-no affair; there is no middle ground. 

 

We have a special term for a successful deductive argument: we call it valid. Validity is a central 

concept in the study of logic. It’s so important, we’re going to define it three times. Each of these 

three definitions is equivalent to the others; they are just three different ways of saying the same 

thing: 

 

An argument is valid just in case… 

(i) its premises guarantee its conclusion; i.e., 

(ii) IF its premises are true, then its conclusion must also be true; i.e., 

(iii) it is impossible for its premises to be true and its conclusion false. 

Here’s an example of a valid deductive argument: 

 

All humans are mortal. 

Socrates is a human. 

/ Socrates is mortal. 

 

This argument is valid because the premises do in fact guarantee the conclusion: if they’re true (as 

a matter of fact, they are), then the conclusion must be true; it’s impossible for the premises to be 

true and the conclusion false. 

 

Here’s a surprising fact about validity: what makes a deductive argument valid has nothing to do 

with its content; rather, validity is determined by the argument’s form. That is to say, what makes 

our Socrates argument valid is not that it says a bunch of accurate things about Socrates, humanity, 

and mortality. The content doesn’t make a difference. Instead, it’s the form that matters—the 

pattern that the argument exhibits. 

 

Later, when undertake a more detailed study of deductive logic, we will give a precise definition 

of logical form.6 For now, we’ll use this rough gloss: the form of an argument is what’s left over 

when you strip away all the non-logical terms and replace them with blanks.7  

 

Here’s what that looks like for our Socrates argument: 

 

 

                                                 
6 Definitions, actually. We’ll study two different deductive logics, each with its own definition of form. 
7 What counts as a “logical term,” you’re wondering? Unhelpful answer: it depends on the logic; different logics count 

different terms as logical. Again, this is just a rough gloss. We don’t need precision just yet, but we’ll get it eventually. 
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All A are B. 

x is A. 

/ x is B. 

 

The letter are the blanks: they’re placeholders, variables. As a matter of convention, we’re using 

capital letters to stand for groups of things (humans, mortals) and lower case letters to stand for 

individual things (Socrates).  

 

The Socrates argument is a good, valid argument because it exhibits this good, valid form. Our 

third way of wording the definition of validity helps us see why this is a valid form: it’s impossible 

for the premises to be true and the conclusion false, in that it’s impossible to plug in terms for A, 

B, and x in such a way that the premises come out true and the conclusion comes out false. 

 

A consequence of the fact that validity is determined entirely by an argument’s form is that, given 

a valid form, every single argument that has that form will be valid. So any argument that has the 

same form as our Socrates argument will be valid; that is, we can pick things at random to stick in 

for A, B, and x, and we’re guaranteed to get a valid argument. Here’s a silly example: 

 

All apples are bananas. 

Donald Trump is an apple. 

/ Donald Trump is a banana. 

 

This argument has the same form as the Socrates argument: we simply replaced A with ‘apples’, 

B with ‘bananas’, and x with ‘Donald Trump’. That means it’s a valid argument. That’s a strange 

thing to say, since the argument is just silly—but it’s the form that matters, not the content. Our 

second way of wording the definition of validity can help us here. The standard for validity is this: 

IF the premises are true, then the conclusion must be. That’s a big ‘IF’. In this case, as a matter of 

fact, the premises are not true (they’re silly, plainly false). However, IF they were true—if in fact 

apples were a type of banana and Donald Trump were an apple—then the conclusion would be 

unavoidable: Trump would have to be a banana. The premises aren’t true, but if they were, the 

conclusion would have to be—that’s validity. 

 

So it turns out that the actual truth or falsehood of the propositions in a valid argument are 

completely irrelevant to its validity. The Socrates argument has all true propositions and it’s valid; 

the Donald Trump argument has all false propositions, but it’s valid, too. They’re both valid 

because they have a valid form; the truth/falsity of their propositions don’t make any difference. 

This means that a valid argument can have propositions with almost any combination of truth-

values: some true premises, some false ones, a true or false conclusion. One can fiddle around with 

the Socrates’ argument’s form, plugging different things in for A, B, and x, and see that this is so. 

For example, plug in ‘ants’ for A, ‘bugs’ for B, and Beyoncé for x: you get one true premise (All 

ants are bugs), one false one (Beyoncé is an ant), and a false conclusion (Beyoncé is a bug). Plug 

in other things and you can get any other combination of truth-values. 

 

Any combination, that is, but one: you’ll never get true premises and a false conclusion. That’s 

because the Socrates’ argument’s form is a valid one; by definition, it’s impossible to generate true 

premises and a false conclusion in that case. 
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This irrelevance of truth-value to judgments about validity means that those judgments are immune 

to revision. That is, once we decide whether an argument is valid or not, that decision cannot be 

changed by the discovery of new information. New information might change our judgment about 

whether a particular proposition in our argument is true or false, but that can’t change our judgment 

about validity. Validity is determined by the argument’s form, and new information can’t change 

the form of an argument. The Socrates argument is valid because it has a valid form. Suppose we 

discovered, say, that as a matter of fact Socrates wasn’t a human being at all, but rather an alien 

from outer space who got a kick out of harassing random people on the streets of ancient Athens. 

That information would change the argument’s second premise—Socrates is human—from a truth 

to a falsehood. But it wouldn’t make the argument invalid. The form is still the same, and it’s a 

valid one.  

 

It’s time to face up to an awkward consequence of our definition of validity. Remember, logic is 

about evaluating arguments—saying whether they’re good or bad. We’ve said that for deductive 

arguments, the standard for goodness is validity: the good deductive arguments are the valid ones. 

Here’s where the awkwardness comes in: because validity is determined by form, it’s possible to 

generate valid arguments that are nevertheless completely ridiculous-sounding on their face. 

Remember, the Donald Trump argument—where we concluded that he’s a banana—is valid. In 

other words, we’re saying that the Trump argument is good; it’s valid, so it gets the logical thumbs-

up. But that’s nuts! The Trump argument is obviously bad, in some sense of ‘bad’, right? It’s a 

collection of silly, nonsensical claims. 

 

We need a new concept to specify what’s wrong with the Trump argument. That concept is 

soundness. This is a higher standard of argument-goodness than validity; in order to meet it, an 

argument must satisfy two conditions.  

 

An argument is sound just in case (i) it’s valid, AND (ii) its premises are in fact true.8 

 

The Trump argument, while valid, is not sound, because it fails to satisfy the second condition: its 

premises are both false. The Socrates argument, however, which is valid and contains nothing but 

truths (Socrates was not in fact an alien), is sound. 

 

The question now naturally arises: if soundness is a higher standard of argument-goodness than 

validity, why didn’t we say that in the first place? Why so much emphasis on validity? The answer 

is this: we’re doing logic here, and as logicians, we have no special insight into the soundness of 

arguments. Or rather, we should say that as logicians, we have only partial expertise on the 

question of soundness. Logic can tell us whether or not an argument is valid, but it cannot tell us 

whether or not it is sound. Logic has no special insight into the second condition for soundness, 

the actual truth-values of premises. To take an example from the silly Trump argument, suppose 

you weren’t sure about the truth of the first premise, which claims that all apples are bananas (you 

have very little experience with fruit, apparently). How would you go about determining whether 

that claim was true or false? Whom would you ask? Well, this is a pretty easy one, so you could 

ask pretty much anybody, but the point is this: if you weren’t sure about the relationship between 

                                                 
8 What about the conclusion? Does it have to be true? Yes: remember, for valid arguments, if the premises are true, 

the conclusion has to be. Sound arguments are valid, so it goes without saying that the conclusion is true, provided 

that the premises are. 



14 Fundamental Methods of Logic 

 

apples and bananas, you wouldn’t think to yourself, “I better go find a logician to help me figure 

this out.” Propositions make claims about how things are in the world. To figure out whether 

they’re true or false, you need to consult experts in the relevant subject-matter. Most claims aren’t 

about logic, so logic is very little help in determining truth-values. Since logic can only provide 

insight into the validity half of the soundness question, we focus on validity and leave soundness 

to one side. 

 

Returning to validity, then, we’re now in a position to do some actual logic. Given what we know, 

we can demonstrate invalidity; that is, we can prove that an invalid argument is invalid, and 

therefore bad (it can’t be sound, either; the first condition for soundness is validity, so if the 

argument’s invalid, the question of actual truth-values doesn’t even come up). Here’s how: 

 

To demonstrate the invalidity of an argument, one must write a down a new argument with 

the same form as the original, whose premises are in fact true and whose conclusion is in 

fact false. This new argument is called a counterexample. 

 

Let’s look at an example. The following argument is invalid: 

 

Some mammals are swimmers. 

All whales are swimmers. 

/ All whales are mammals. 

 

Now, it’s not really obvious that the argument is invalid. It does have one thing going for it: all the 

claims it makes are true. But we know that doesn’t make any difference, since validity is 

determined by the argument’s form, not its content. If this argument is invalid, it’s invalid because 

it has a bad, invalid form. This is the form: 

 

Some A are B. 

All C are B. 

/ All C are A. 

 

To prove that the original whale argument is invalid, we have to show that this form is invalid. For 

a valid form, we learned, it’s impossible to plug things into the blanks and get true premises and a 

false conclusion; so for an invalid form, it’s possible to plug things into the blanks and get that 

result. That’s how we generate our counterexample: we plug things in for A, B, and C so that the 

premises turn out true and the conclusion turns out false. There’s no real method here; you just use 

your imagination to come up with an A, B, and C that give the desired result.9 Here’s a 

counterexample: 

 

Some lawyers are American citizens. 

All members of Congress are American citizens. 

/ All members of Congress are lawyers. 

                                                 
9 Possibly helpful hint: universal generalizations (All ___ are ____) are rarely true, so if you have to make one true, 

as in this example, it might be good to start there; likewise, particular claims (Some ___ are ___) are rarely false, so 

if you have to make one false—you don’t in this particular example, but if you had one as a conclusion, you would—

that would be a good place to start. 
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For A, we inserted ‘lawyers’, for B we chose ‘American citizens’, and for C, ‘members of 

Congress’. The first premise is clearly true. The second premise is true: non-citizens aren’t eligible 

to be in Congress. And the conclusion is false: there are lots of people in Congress who are non-

lawyers—doctors, businesspeople, etc.  

 

That’s all we need to do to prove that the original whale-argument is invalid: come up with one 

counterexample, one way of filling in the blanks in its form to get true premises and a false 

conclusion. We only have to prove that it’s possible to get true premises and a false conclusion, 

and for that, you only need one example. 

 

What’s far more difficult is to prove that a particular argument is valid. To do that, we’d have to 

show that its form is such that it’s impossible to generate a counterexample, to fill in the blanks to 

get true premises and a false conclusion. Proving that it’s possible is easy; you only need one 

counterexample. Proving that it’s impossible is hard; in fact, at first glance, it looks impossibly 

hard! What do you do? Check all the possible ways of plugging things into the blanks, and make 

sure that none of them turn out to have true premises and a false conclusion? That’s nuts! There 

are, literally, infinitely many ways to fill in the blanks in an argument’s form. Nobody has the time 

to check infinitely many potential counterexamples.  

 

Well, take heart; it’s still early. For now, we’re able to do a little bit of deductive logic: given an 

invalid argument, we can demonstrate that it is in fact invalid. We’re not yet in the position we’d 

like to be in, namely of being able to determine, for any argument whatsoever, whether it’s valid 

or not. Proving validity looks too hard based on what we know so far. But we’ll know more later: 

in chapters 3 and 4 we will study two deductive logics, and each one will give us a method of 

deciding whether or not any given argument is valid. But that’ll have to wait. Baby steps. 

 

Inductive Arguments 
 

That’s all we’ll say for now about deductive arguments. On to the other type of argument we’re 

introducing in this section: inductive arguments. These are distinguished from their deductive 

cousins by their relative lack of ambition. Whereas deductive arguments aim to give premises that 

guarantee/necessitate the conclusion, inductive arguments are more modest: they aim merely to 

provide premises that make the conclusion more probable than it otherwise would be; they aim to 

support the conclusion, but without making it unavoidable. 

 

Here is an example of an inductive argument: 

 

I’m telling you, you’re not going die taking a plane to visit us. Airplane crashes happen far 

less frequently than car crashes, for example; so you’re taking a bigger risk if you drive. In 

fact, plane crashes are so rare, you’re far more likely to die from slipping in the bathtub. 

You’re not going to stop taking showers, are you? 

 

The speaker is trying to convince her visitor that he won’t die in a plane crash on the way to visit 

her. That’s the conclusion: you won’t die. This claim is supported by the others—which emphasize 

how rare plane crashes are—but it is not guaranteed by them. After all, plane crashes sometimes 
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do happen. Instead, the premises give reasons to believe that the conclusion—you won’t die—is 

very probable. 

 

Since inductive arguments have a different, more modest goal than their deductive cousins, it 

would be unreasonable for us to apply the same evaluative standards to both kinds of argument. 

That is, we can’t use the terms ‘valid’ and ‘invalid’ to apply to inductive arguments. Remember, 

for an argument to be valid, its premises must guarantee its conclusion. But inductive arguments 

don’t even try to provide a guarantee of the conclusion; technically, then, they’re all invalid. But 

that won’t do. We need a different evaluative vocabulary to apply to inductive arguments. We will 

say of inductive arguments that they are (relatively) strong or weak, depending on how probable 

their conclusions are in light of their premises. One inductive argument is stronger than another 

when its conclusion is more probable than the other, given their respective premises. 

 

One consequence of this difference in evaluative standards for inductive and deductive arguments 

is that for the former, unlike the latter, our evaluations are subject to revision in light of new 

evidence. Recall that since the validity or invalidity of a deductive argument is determined entirely 

by its form, as opposed to its content, the discovery of new information could not affect our 

evaluation of those arguments. The Socrates argument remained valid, even if we discovered that 

Socrates was in fact an alien. Our evaluations of inductive arguments, though, are not immune to 

revision in this way. New information might make the conclusion of an inductive argument more 

or less probable, and so we would have to revise our judgment accordingly, saying that the 

argument is stronger or weaker. Returning to the example above about plane crashes, suppose we 

were to discover that the FBI in the visitor’s hometown had recently being hearing lots of “chatter” 

from terrorist groups active in the area, with strong indications that they were planning to blow up 

a passenger plane. Yikes! This would affect our estimation of the probability of the conclusion of 

the argument—that the visitor wasn’t going to die in a crash. The probability of not dying goes 

down (as the probability of dying goes up). This new information would trigger a re-evaluation of 

the argument, and we would say it’s now weaker. If, on the other hand, we were to learn that the 

airline that flies between the visitor’s and the speaker’s towns had recently upgraded its entire 

fleet, getting rid of all of its older planes, replacing them with newer, more reliable model, while 

in addition instituting a new, more thorough and rigorous program of pre- and post-flight safety 

and maintenance inspections—well, then we might revise our judgment in the other direction. 

Given this information, we might judge that things are even safer for the visitor as it regards plane 

travel; that is, the proposition that the visitor won’t die is now even more probable than it was 

before. This new information would strengthen the argument to that conclusion. 

 

Reasonable follow-up question: how much is the argument strengthened or weakened by the new 

information imagined in these scenarios? Answer: how should I know? Sorry, that’s not very 

helpful. But here’s the point: we’re talking about probabilities here; sometimes it’s hard to know 

what the probability of something happening really is. Sometimes it’s not: if I flip a coin, I know 

that the probability of it coming up tails is 0.5. But how probable is it that a particular plane from 

Airline X will crash with our hypothetical visitor on board? I don’t know. And how much more 

probable is a disaster on the assumption of increased terrorist chatter? Again, I have no idea. All I 

know is that the probability of dying on the plane goes up in that case. And in the scenario in which 

Airline X has lots of new planes and security measures, the probability of a crash goes down. 

Sometimes, with inductive arguments, all we can do is make relative judgments about strength 
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and weakness: in light of these new facts, the conclusion is more or less probable than it was before 

we learned of the new facts. Sometimes, however, we can be precise about probabilities and make 

absolute judgments about strength and weakness: we can say precisely how probable a conclusion 

is in light of the premises supporting it. But this is a more advanced topic. We will discuss inductive 

logic in chapters 5 and 6, and will go into more depth then. Until then, patience. Baby steps. 

 

 

EXERCISES 

 

1.  Determine whether the following statements are true or false. 

(a)  Not all valid arguments are sound. 

(b)  An argument with a false conclusion cannot be sound. 

(c)  An argument with true premises and a true conclusion is valid. 

(d)  An argument with a false conclusion cannot be valid. 

 

2.  Demonstrate that the following arguments are invalid. 

 

(a) Some politicians are Democrats. 

 Hillary Clinton is a politician. 

 / Hillary Clinton is a Democrat. 

 

 The argument’s form is: 

  

Some A are B. 

 x is A. 

 / x is B. 

 

 [where ‘A’ and ‘B’ stand for groups of things and ‘x’ stands for an individual] 

 

(b) All dinosaurs are animals. 

 Some animals are extinct. 

 / All dinosaurs are extinct. 

 

 The argument’s form is: 

 

 All A are B. 

 Some B are C. 

 / All A are C. 

 

 [where ‘A’, ‘B’, and ‘C’ stand for groups of things] 

 

3.  Consider the following inductive argument (about a made-up person): 
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Sally Johansson does all her grocery shopping at an organic food co-op. She’s a huge fan 

of tofu. She’s really into those week-long juice cleanse thingies. And she’s an active 

member of PETA. I conclude that she’s a vegetarian. 

 

(a)  Make up a new piece of information about Sally that weakens the argument. 

 

(b)  Make up a new piece of information about Sally that strengthens the argument. 

 

 

V.  Diagramming Arguments 

 

Before we get down to the business of evaluating arguments—of judging them valid or invalid, 

strong or weak—we still need to do some preliminary work. We need to develop our analytical 

skills to gain a deeper understanding of how arguments are constructed, how they hang together. 

So far, we’ve said that the premises are there to support the conclusion. But we’ve done very little 

in the way of analyzing the structure of arguments: we’ve just separated the premises from the 

conclusion. We know that the premises are supposed to support the conclusion. What we haven’t 

explored is the question of just how the premises in a given argument do that job—how they work 

together to support the conclusion, what kinds of relationships they have with one another. This is 

a deeper level of analysis than merely distinguishing the premises from the conclusion; it will 

require a mode of presentation more elaborate than a list of propositions with the bottom one 

separated from the others by a horizontal line. To display our understanding of the relationships 

among premises supporting the conclusion, we are going to depict them: we are going to draw 

diagrams of arguments. 

 

Here’s how the diagrams will work. They will consist of three elements: (1) circles with numbers 

inside them—each of the propositions in the argument we’re diagramming will be assigned a 

number, so these circled numbers in the diagram will represent the propositions; (2) arrows pointed 

at circled numbers—these will represent relationships of support, where one or more propositions 

provide a reason for believing the one pointed to; and (3) horizontal brackets—propositions 

connected by these will be interdependent (in a sense to be specified below). 

 

Our diagrams will always feature the circled number corresponding to the conclusion at the 

bottom. The premises will be above, with brackets and arrows indicating how they collectively 

support the conclusion and how they’re related to one another. There are a number of different 

relationships that premises can have to one another. We will learn how to draw diagrams of 

arguments by considering them in turn. 

 

Independent Premises 

 

Often, different premises will support a conclusion—or another premise—individually, without 

help from any others. When this is the case, we draw an arrow from the circled number 

representing that premise to the circled number representing the proposition it supports. 

 

Consider this simple argument: 
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① Marijuana is less addictive than alcohol. In addition, ② it can be used as a medicine to 

treat a variety of conditions. Therefore, ③ marijuana should be legal. 

 

The last proposition is clearly the conclusion (the word ‘therefore’ is a big clue), and the first two 

propositions are the premises supporting it. They support the conclusion independently. The mark 

of independence is this: each of the premises would still provide support for the conclusion even 

if the other weren’t true; each, on its own, gives you a reason for believing the conclusion. In this 

case, then, we diagram the argument as follows: 

 

①             ② 

     ↘     ↙ 

        ③ 

 

Intermediate Premises 

 
Some premises support their conclusions more directly than others. Premises provide more indirect 

support for a conclusion by providing a reason to believe another premise that supports the 

conclusion more directly. That is, some premises are intermediate between the conclusion and 

other premises. 

 

Consider this simple argument: 

 

① Automatic weapons should be illegal. ② They can be used to kill large numbers of 

people in a short amount of time. This is because ③ all you have to do is hold down the 

trigger and bullets come flying out in rapid succession. 

 

The conclusion of this argument is the first proposition, so the premises are propositions 2 and 3. 

Notice, though, that there’s a relationship between those two claims. The third sentence starts with 

the phrase ‘This is because’, indicating that it provides a reason for another claim. The other claim 

is proposition 2; ‘This’ refers to the claim that automatic weapons can kill large numbers of people 

quickly. Why should I believe that they can do that? Because all one has to do is hold down the 

trigger to release lots of bullets really fast. Proposition 2 provides immediate support for the 

conclusion (automatic weapons can kill lots of people really quickly, so we should make them 

illegal); proposition 3 supports the conclusion more indirectly, by giving support to proposition 2. 

Here is how we diagram in this case: 

③ 

↓ 

② 

↓ 

① 
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Joint Premises 

 

Sometimes premises need each other: the job of supporting another proposition can’t be done by 

each on its own; they can only provide support together, jointly. Far from being independent, such 

premises are interdependent. In this situation, on our diagrams, we join together the interdependent 

premises with a bracket underneath their circled numbers. 

 

There are a number of different ways in which premises can provide joint support. Sometimes, 

premises just fit together like a hand in a glove; or, switching metaphors, one premise is like the 

key that fits into the other to unlock the proposition they jointly support. An example can make 

this clear: 

 

① The chef has decided that either salmon or chicken will be tonight’s special. ② Salmon 

won’t be the special. Therefore, ③ the special will be chicken. 

 

Neither premise 1 nor premise 2 can support the conclusion on its own. A useful rule of thumb for 

checking whether one proposition can support another is this: read the first proposition, then say 

the word ‘therefore’, then read the second proposition; if it doesn’t make any sense, then you can’t 

draw an arrow from the one to the other. Let’s try it here: “The chef has decided that either salmon 

or chicken will be tonight’s special; therefore, the special will be chicken.” That doesn’t make any 

sense. What happened to salmon? Proposition 1 can’t support the conclusion on its own. Neither 

can the second: “Salmon won’t be the special; therefore, the special will be chicken.” Again, that 

makes no sense. Why chicken? What about steak, or lobster? The second proposition can’t support 

the conclusion on its own, either; it needs help from the first proposition, which tells us that if it’s 

not salmon, it’s chicken. Propositions 1 and 2 need each other; they support the conclusion jointly. 

This is how we diagram the argument: 

 

①              ② 

└───────┘ 

          ↓ 

          ③ 

 

The same diagram would depict the following argument: 

 

① John Le Carre gives us realistic, three-dimensional characters and complex, interesting 

plots. ② Ian Fleming, on the other hand, presents an unrealistically glamorous picture of 

international espionage, and his plotting isn’t what you’d call immersive. ③ Le Carre is a 

better author of spy novels than Fleming. 

 

In this example, the premises work jointly in a different way than in the previous example. Rather 

than fitting together hand-in-glove, these premises each give us half of what we need to arrive at 

the conclusion. The conclusion is a comparison between two authors. Each of the premises makes 
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claims about one of the two authors. Neither one, on its own, can support the comparison, because 

the comparison is a claim about both of them. The premises can only support the conclusion 

together. We would diagram this argument the same way as the last one. 

 

Another common pattern for joint premises is when general propositions need help to provide 

support for particular propositions. Consider the following argument: 

 

① People shouldn’t vote for racist, incompetent candidates for president. ② Donald Trump 

seems to make a new racist remark at least twice a week. And ③ he lacks the competence 

to run even his own (failed) businesses, let alone the whole country. ④ You shouldn’t vote 

for Trump to be the president. 

 

The conclusion of the argument, the thing it’s trying to convince us of, is the last proposition—

you shouldn’t vote for Trump. This is a particular claim: it’s a claim about an individual person, 

Trump. The first proposition in the argument, on the other hand, is a general claim: it asserts that, 

generally speaking, people shouldn’t vote for incompetent racists; it makes no mention of an 

individual candidate. It cannot, therefore, support the particular conclusion—about Trump—on its 

own. It needs help from other particular claims—propositions 2 and 3—that tell us that the 

individual in the conclusion, Trump, meets the conditions laid out in the general proposition 1: 

racism and incompetence. This is how we diagram the argument: 

 

①          ②          ③ 

└────────────┘ 

               ↓ 

               ④           

 

Occasionally, an argumentative passage will only explicitly state one of a set of joint premises 

because the others “go without saying”—they are part of the body of background information 

about which both speaker and audience agree. In the last example, that Trump was an incompetent 

racist was not uncontroversial background information. But consider this argument: 

 

① It would be good for the country to have a woman with lots of experience in public 

office as president. ② People should vote for Hillary Clinton. 

 

Diagramming this argument seems straightforward: an arrow pointing from ① to ②. But we’ve 

got the same relationship between the premise and conclusion as in the last example: the premise 

is a general claim, mentioning no individual at all, while the conclusion is a particular claim about 

Hillary Clinton. Doesn’t the general premise “need help” from particular claims to the effect that 

the individual in question, Hillary Clinton, meets the conditions set forth in the premise—i.e., that 

she’s a woman and that she has lots of experience in public office? No, not really. Everybody 
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knows those things about her already; they go without saying, and can therefore be left unstated 

(implicit, tacit). 

 

But suppose we had included those obvious truths about Clinton in our presentation of the 

argument; suppose we had made the tacit premises explicit: 

 

① It would be good for the country to have a woman with lots of experience in public 

office as president. ② Hillary Clinton is a woman. And ③ she has deep experience with 

public offices—as a First Lady, U.S. Senator, and Secretary of State. ④ People should vote 

for Hillary Clinton. 

 

How do we diagram this? Earlier, we talked about a rule of thumb for determining whether or not 

it’s a good idea to draw an arrow from one number to another in a diagram: read the sentence 

corresponding to the first number, say the word ‘therefore’, then read the sentence corresponding 

to the second number; if it doesn’t make sense, then the arrow is a bad idea. But if it does make 

sense, does that mean you should draw the arrow? Not necessarily. Consider the first and last 

sentences in this passage. Read the first, then ‘therefore’, then the last. Makes pretty good sense! 

That’s just the original formulation of the argument with the tacit propositions remaining implicit. 

And in that case we said it would be OK to draw an arrow from the general premise’s number 

straight to the conclusion’s. But when we add the tacit premises—the second and third sentences 

in this passage—we can’t draw an arrow directly from ① to ④. To do so would obscure the 

relationship among the first three propositions and misrepresent how the argument works. If we 

drew an arrow from ① to ④, what would we do with ② to ③ in our diagram? Do they get their 

own arrows, too? No, that won’t do. Such a diagram would be telling us that the first three 

propositions each independently provide a reason for the conclusion. But they’re clearly not 

independent; there’s a relationship among them that our diagram must capture, and it’s the same 

relationship we saw in the parallel argument about Trump, with the particular claims in the second 

and third propositions working together with the general claim in the first: 

 

①          ②          ③ 

└────────────┘ 

               ↓ 

               ④           

 

The arguments we’ve looked at thus far have been quite short—only two or three premises. But of 

course some arguments are longer than that. Some are much longer. It may prove instructive, at 

this point, to tackle one of these longer bits of reasoning. It comes from the (fictional) master of 

analytical deductive reasoning, Sherlock Holmes. The following passage is from the first Holmes 

story—A Study in Scarlet, one of the few novels Arthur Conan Doyle wrote about his most famous 

character—and it’s a bit of early dialogue that takes place shortly after Holmes and his longtime 

associate Dr. Watson meet for the first time. At that first meeting, Holmes did his typical Holmes-

y thing, where he takes a quick glance at a person and then immediately makes some startling 
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inference about them, stating some fact about them that it seems impossible he could have known. 

Here they are—Holmes and Watson—talking about it a day or two later. Holmes is the first to 

speak: 

 

“Observation with me is second nature. You appeared to be surprised when I told you, on 

our first meeting, that you had come from Afghanistan.” 

 

“You were told, no doubt.” 

 

“Nothing of the sort. I knew you came from Afghanistan. From long habit the train of 

thoughts ran so swiftly through my mind, that I arrived at the conclusion without being 

conscious of intermediate steps. There were such steps, however. The train of reasoning 

ran, ‘Here is a gentleman of a medical type, but with the air of a military man. Clearly an 

army doctor, then. He has just come from the tropics, for his face is dark, and that is not 

the natural tint of his skin, for his wrists are fair. He has undergone hardship and sickness, 

as his haggard face says clearly. His left arm has been injured. He holds it in a stiff and 

unnatural manner. Where in the tropics could an English army doctor have seen much 

hardship and got his arm wounded? Clearly in Afghanistan.’ The whole train of thought 

did not occupy a second. I then remarked that you came from Afghanistan, and you were 

astonished.”10 

 

This is an extended inference, with lots of propositions leading to the conclusion that Watson had 

been in Afghanistan. Before we draw the diagram, let’s number the propositions involved in the 

argument: 

1. Watson was in Afghanistan. 

2. Watson is a medical man. 

3. Watson is a military man. 

4. Watson is an army doctor. 

5. Watson has just come from the tropics. 

6. Watson’s face is dark. 

7. Watson’s skin is not naturally dark. 

8. Watson’s wrists are fair. 

9. Watson has undergone hardship and sickness. 

10. Watson’s face is haggard. 

11. Watson’s arm has been injured. 

12. Watson holds his arm stiffly and unnaturally. 

13. Only in Afghanistan could an English army doctor have been in the tropics, seen much 

hardship and got his arm wounded. 

Lots of propositions, but they’re mostly straightforward, right from the text. We just had to do a 

bit of paraphrasing on the last one—Holmes asks a rhetorical question and answers it, the upshot 

of which is the general proposition in 13. We know that proposition 1 is our conclusion, so that 

goes at the bottom of the diagram. The best thing to do is to start there and work our way up. Our 

                                                 
10 Also excerpted in Copi and Cohen, 2009, Introduction to Logic 13e, pp. 58 - 59. 
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next question is: Which premise or premises support that conclusion most directly? What goes on 

the next level up on our diagram? 

 

It seems fairly clear that proposition 13 belongs on that level. The question is whether it is alone 

there, with an arrow from 13 to 1, or whether it needs some help. The answer is that it needs help. 

This is the general/particular pattern we identified above. The conclusion is about a particular 

individual—Watson. Proposition 13 is entirely general (presumably Holmes knows this because 

he reads the paper and knows the disposition of Her Majesty’s troops throughout the Empire); it 

does not mention Watson. So proposition 13 needs help from other propositions that give us the 

relevant particulars about the individual, Watson. A number of conditions are laid out that a person 

must meet in order for us to conclude that they’ve been in Afghanistan: army doctor, being in the 

tropics, undergoing hardship, getting wounded. That Watson satisfies these conditions is asserted 

by, respectively, propositions 4, 5, 9, and 11. Those are the propositions that must work jointly 

with the general proposition 13 to give us our particular conclusion about Watson: 

 

④          ⑤          ⑬          ⑨          ⑪ 

└───────────────────────┘ 

                             ↓ 

                            ① 

 

Next, we must figure out how what happens at the next level up. How are propositions 4, 5, 13, 9, 

and 11 justified? As we noted, the justification for 13 happens off-screen, as it were. Holmes is 

able to make that generalization because he follows the news and knows, presumably, that the only 

place in the British Empire where army troops are actively fighting in tropics is Afghanistan. The 

justification for the other propositions, however, is right there in the text. 

 

Let’s take them one at a time. First, proposition 4: Watson is an army doctor. How does Holmes 

support this claim? With propositions 2 and 3, which tell us that Watson is a medical and a military 

man, respectively. This is another pattern we’ve identified: these two proposition jointly support 

4, because they each provide half of what we need to get there. There are two parts to the claim in 

4: army and doctor. 2 gives us the doctor part; 3 gives us the army part. 2 and 3 jointly support 4. 

 

Skipping 5 (it’s a bit more involved), let’s turn to 9 and 11, which are easily dispatched. What’s 

the reason for believing 9, that Watson has suffered hardship? Go back to the passage. It’s his 

haggard face that testifies to his suffering. Proposition 10 supports 9. Now 11: what evidence do 

we have that Watson’s arm has been injured? Proposition 12: he holds it stiffly and unnaturally. 

12 supports 11. 

 

Finally, proposition 5: Watson was in the tropics. There are three propositions involved in 

supporting this one: 6, 7, and 8. Proposition 6 tells us Watson’s face is dark; 7 tells us that his skin 

isn’t naturally dark; 8 tells us his wrists are fair (light-colored skin). It’s tempting to think that 6 

on its own—dark skin—supports the claim that he was in the tropics. But it does not. One can have 

dark skin and not visited the tropics, provided one’s skin is naturally dark. What tells us Watson 

has been in the tropics is that he has a tan—that his skin is dark and that’s not its natural tone. 6 
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and 7 jointly support 5. And how do we know Watson’s skin isn’t naturally dark? By checking his 

wrists, which are fair: proposition 8 supports 7. 

 

So this is our final diagram: 

 

                       ⑧ 

                        ↓ 

   ②  ③   ⑥  ⑦ 

   └──┘    └──┘                   ⑩         ⑫ 

       ↓         ↓                       ↓          ↓ 

      ④          ⑤          ⑬          ⑨          ⑪ 

      └───────────────────────┘ 

                                   ↓ 

                                  ① 

 

And there we go. An apparently unwieldy passage—thirteen propositions!—turns out not to be so 

bad. The lesson is that we must go step by step: start by identifying the conclusion, then ask which 

proposition(s) most directly support it; from there, work back until all the propositions have been 

diagrammed. Every long argument is just composed out of smaller, easily analyzed inferences. 

 

 

EXERCISES 

 

Diagram the following arguments. 

 

1.  ① Hillary Clinton would make a better president than Donald Trump. ② Clinton is a tough-

minded pragmatist who gets things done. ③ Trump is a thin-skinned maniac who will be totally 

ineffective in dealing with Congress. 

 

2.  ① Donald Trump is a jerk who’s always offending people. Furthermore, ② he has no 

experience whatsoever in government. ③ Nobody should vote for him to be president. 

 

3.  ① Human beings evolved to eat meat, so ② eating meat is not immoral. ③ It’s never immoral 

for a creature to act according to its evolutionary instincts. 
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4.  ① We need new campaign finance laws in this country. ② The influence of Wall Street money 

on elections is causing a breakdown in our democracy with bad consequences for social justice. 

③ Politicians who have taken those donations are effectively bought and paid for, consistently 

favoring policies that benefit the rich at the expense of the vast majority of citizens. 

 

5.  ① Voters shouldn’t trust any politician who took money from Wall Street bankers. ② Hillary 

Clinton accepted hundreds of thousands of dollars in speaking fee from Goldman Sachs, a big 

Wall Street firm. ③ You shouldn’t trust her. 

 

6.  ① There are only three possible explanations for the presence of the gun at the crime scene: 

either the defendant just happened to hide from the police right next to where the gun was found, 

or the police planted the gun there after the fact, or it was really the defendant’s gun like the 

prosecution says. ② The first option is too crazy a coincidence to be at all believable, and ③ we’ve 

been given no evidence at all that the officers on the scene had any means or motivation to plant 

the weapon. Therefore, ④ it has to be the defendant’s gun. 

 

 

7.  ① Golden State has to be considered the clear favorite to win the NBA Championship. ② No 

team has ever lost in the Finals after taking a 3-games-to-1 lead, and ③ Golden State now leads 

Cleveland 3-to-1. In addition, ④ Golden State has the MVP of the league, Stephen Curry. 

 

 

8.  ① We should increase funding to public colleges and universities. First of all, ② as funding 

has decreased, students have had to shoulder a larger share of the financial burden of attending 

college, amassing huge amounts of debt. ③ A recent report shows that the average college student 

graduates with almost $30,000 in debt. Second, ④ funding public universities is a good 

investment. ⑤ Every economist agrees that spending on public colleges is a good investment for 

states, where the economic benefits far outweigh the amount spent. 

 

 

9.  ① LED lightbulbs last for a really long time and ② they cost very little to keep lit. ③ They 

are, therefore, a great way to save money. ④ Old-fashioned incandescent bulbs, on the other hand, 

are wasteful. ⑤ You should buy LEDs instead of incandescent bulbs. 
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10. ① There’s a hole in my left shoe,  which means ② my feet will get wet when I wear them in 

the rain, and so ③ I’ll probably catch a cold or something if I don’t get a new pair of shoes. 

Furthermore, ④ having new shoes would make me look cool. ⑤ I should buy new shoes. 

 

 

11. Look, it’s just simple economics: ① if people stop buying a product, then companies will stop 

producing it. And ② people just aren’t buying tablets as much anymore. ③ The CEO of Best Buy 

recently said that sales of tablets are “crashing” at his stores. ④ Samsung’s sales of tablets were 

down 14% this year alone. ⑤ Apple’s not going to continue to make your beloved iPad for much 

longer. 

 

 

12. ① We should increase infrastructure spending as soon as possible. Why? First, ② the longer 

we delay needed repairs to things like roads and bridges, the more they will cost in the future. 

Second, ③ it would cause a drop in unemployment, as workers would be hired to do the work. 

Third, ④ with interest rates at all-time lows, financing the spending would cost relatively little. A 

fourth reason? ⑤ Economic growth. ⑥ Most economists agree that government spending in the 

current climate would boost GDP. 

 

 

13. ① Smoking causes cancer and ② cigarettes are really expensive. ③ You should quit smoking. 

④ If you don’t, you’ll never get a girlfriend. ⑤ Smoking makes you less attractive to girls: ⑥ it 

stains your teeth and ⑦ it gives you bad breath. 

 

 

14. ① The best cookbooks are comprehensive, well-written, and most importantly, have recipes 

that work. This is why ② Mark Bittman’s classic How to Cook Everything is among the best 

cookbooks ever written. As its title indicates, ③ Bittman’s book is comprehensive. Of course it 

doesn’t literally teach you how to cook everything, but ④ it features recipes for cuisines from 

around the world—from French, Italian, and Spanish food to dishes from the Far and Middle East, 

as well as classic American comfort foods. In addition, ⑤ he covers almost every ingredient 

imaginable, with all different kinds of meats—including game—and every fruit and vegetable 

under the sun. ⑥ The book is also extremely well-written. ⑦ Bittman’s prose is clear, concise, 

and even witty. Finally, ⑧ Bittman’s recipes simply work. ⑨ In my many years of consulting 

How to Cook Everything, I’ve never had one lead me astray. 
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15. ① Logic teachers should make more money than CEOs. ② Logic is more important than 

business. ③ Without logic, we wouldn’t be able to tell when people were trying to fool us: ④ we 

wouldn’t know a good argument from a bad one. ⑤ But nobody would miss business if it went 

away. ⑥ What do businesses do except take our money? ⑦ And all those damned commercials 

they make; everybody hates commercials. ⑧ In a well-organized society, members of more 

important professions would be paid more, because ⑨ paying people is a great way to encourage 

them to do useful things. ⑩ People love money. 

 



  

 

CHAPTER 2 

 

Informal Logical Fallacies 
 

 

 

 

 

 

 

 

 

 

I.  Logical Fallacies: Formal and Informal 

 

Generally and crudely speaking, a logical fallacy is just a bad argument. Bad, that is, in the logical 

sense of being incorrect—not bad in sense of being ineffective or unpersuasive. Alas, many 

fallacies are quite effective in persuading people; that is why they’re so common. Often, they’re 

not used mistakenly, but intentionally—to fool people, to get them to believe things that maybe 

they shouldn’t. The goal of this chapter is to develop the ability to recognize these bad arguments 

for what they are so as not to be persuaded by them.  

 

There are formal and informal logical fallacies. The formal fallacies are simple: they’re just invalid 

deductive arguments. Consider the following: 

 

If the Democrats retake Congress, then taxes will go up. 

But the Democrats won’t retake Congress. 

/ Taxes won’t go up. 

 

This argument is invalid. It’s got an invalid form: If A then B; not A; therefore, not B. Any 

argument of this form is fallacious, an instance of “Denying the Antecedent.”1 We can leave it as 

an exercise for the reader to fill in propositions for A and B to get true premises and a false 

conclusion. Intuitively, it’s possible for that to happen: maybe a Republican Congress raises taxes 

for some reason (unlikely, but not unprecedented).  

                                                 
1 If/then propositions like the first premise are called “conditional” propositions. The A part is the so-called 

“antecedent” of the conditional. The second premise denies it. More use of this kind of vocabulary in Chapter 4. 
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Our concern in this chapter is not with formal fallacies—arguments that are bad because they have 

a bad form—but with informal fallacies. These arguments are bad, roughly, because of their 

content. More than that: their content, context, and/or mode of delivery.  

 

Consider Hitler. Here’s a guy who convinced a lot of people to believe things they had no business 

believing (because they were false). How did he do it? With lots of fallacious arguments. But it 

wasn’t just the contents of the arguments (appeals to fear and patriotism, personal attacks on 

opponents, etc.) that made them fallacious; it was also the context in which he made them, and the 

(extremely effective) way he delivered them. Leni Riefenstahl’s famous 1935 

documentary/propaganda film Triumph of the Will, which follows Hitler during a Nazi party rally 

in Nuremberg, illustrates this. It has lots of footage of Hitler giving speeches. We hear the jingoistic 

slogans and vitriolic attacks—but we also see important elements of his persuasive technique. 

First, the setting. We see Hitler marching through row upon row of neatly formed and impeccably 

outfitted German troops—thousands of them—approaching a massive raised dais, behind which 

are stories-high banners with the swastika on a red field. The setting, the context for Hitler’s 

speeches, was literally awesome—designed to inspire awe. It makes his audience all the more 

receptive to his message, all the more persuadable. Moreover, Hitler’s speechifying technique was 

masterful. He is said to have practiced assiduously in front of a mirror, and it shows. His array of 

hand gestures, facial contortions, and vocal modulations were all expertly designed to have 

maximum impact on the audience.  

 

This consideration of Hitler highlights a couple of important things about the informal fallacies. 

First, they’re more than just bad arguments—they’re rhetorical tricks, extra-logical techniques 

used intentionally to try to convince people of things they maybe ought not to believe. Second, 

they work! Hitler convinced an entire nation to believe all sorts of crazy things. And advertisers 

and politicians continue to use these same techniques all the time. It’s incumbent upon a 

responsible citizen and consumer to be aware of this, and to do everything possible to avoid being 

bamboozled. That means learning about the fallacies. Hence, this chapter. 

 

There are lots of different informal logical fallacies, lots of different ways of defining and 

characterizing them, lots of different ways of organizing them into groups. Since Aristotle first did 

it in his Sophistical Refutations, authors of logic books have been defining and classifying the 

informal fallacies in various ways. These remarks are offered as a kind of disclaimer: the reader is 

warned that the particular presentation of the fallacies in this chapter will be unique and will 

disagree in various ways with other presentations, reflecting as it must the author’s own 

idiosyncratic interests, understanding, and estimation of what is important. This is as it should be 

and always is. The interested reader is encouraged to consult alternative sources for further 

edification. 

 

We will discuss 20 different informal fallacies, and we will group them into four families: (1) 

Fallacies of Distraction, (2) Fallacies of Weak Induction, (3) Fallacies of Illicit Presumption, and 

(4) Fallacies of Linguistic Emphasis. We take these up in turn. 
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II.  Fallacies of Distraction 

 

We will discuss five informal fallacies under this heading. What they all have in common is that 

they involve arguing in such a way that issue that’s supposed to be under discussion is somehow 

sidestepped, avoided, or ignored. These fallacies are often called “Fallacies of Relevance” because 

they involve arguments that are bad insofar as the reasons given are irrelevant to the issue at hand. 

People who use these techniques with malicious intent are attempting to distract their audience 

from the central questions they’re supposed to be addressing, allowing them to appear to win an 

argument that they haven’t really engaged in.  

 

Appeal to Emotion (Argumentum ad Populum2) 

 

The Latin name of this fallacy literally means “argument to the people,” where ‘the people’ is used 

in the pejorative sense of “the unwashed masses,” or “the fickle mob”—the hoi polloi. It’s 

notoriously effective to play on people’s emotions to get them to go along with you, and that’s the 

technique identified here. But, the thought is, we shouldn’t decide whether or not to believe things 

based on an emotional response; emotions are a distraction, blocking hard-headed, rational 

analysis. 

 

Go back to Hitler for a minute. He was an expert at the appeal to emotion. He played on Germans’ 

fears and prejudices, their economic anxieties, their sense of patriotism and nationalistic pride. He 

stoked these emotions with explicit denunciations of Jews and non-Germans, promises of the 

return of glory for the Fatherland—but also using the sorts of techniques we canvassed above, with 

awesome settings and hyper-sensational speechifying. 

 

There are as many different versions of the appeal to emotion as there are human emotions. Fear 

is perhaps the most commonly exploited emotion for politicians. Political ads inevitably try to 

suggest to voters that one’s opponent will take away medical care or leave us vulnerable to 

terrorists, or some other scary outcome—usually without a whole lot in the way of substantive 

proof that these fears are at all reasonable. This is a fallacious appeal to emotion.  

 

Advertisers do it, too. Think of all the ads with sexy models schilling for cars or beers or whatever. 

What does sexiness have to do with how good a beer tastes? Nothing. The ads are trying to engage 

your emotions to get you thinking positively about their product. 

 

An extremely common technique, especially for advertisers, is to appeal to people’s underlying 

desire to fit in, to be hip to what everybody else is doing, not to miss out. This is the bandwagon 

appeal. The advertisement assures us that a certain television show is #1 in the ratings—with the 

tacit conclusion being that we should be watching, too. But this is a fallacy. We’ve all known it’s 

a fallacy since we were little kids, the first time we did something wrong because all of our friends 

were doing it, too, and our moms asked us, “If all of your friends jumped off a bridge, would you 

do that too?” 

                                                 
2 Many of the fallacies have Latin names, because, as we noted, identifying the fallacies has been an occupation of 

logicians since ancient times, and because ancient and medieval work comes down to us in Latin, which was the 

language of scholarship in the West for centuries.  
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One more example: suppose you’re one of those sleazy personal injury lawyers—an “ambulance 

chaser”. You’ve got a client who was grocery shopping at Wal-Mart, and in the produce aisle she 

slipped on a grape that had fallen on the floor and injured herself. Your eyes turn into dollar signs 

and a cha-ching noise goes off in your brain: Wal-Mart has deep pockets. So on the day of the 

trial, what do you do? How do you coach your client? Tell her to wear her nicest outfit, to look her 

best? Of course not! You wheel her into the courtroom in a wheelchair (whether she needs it or 

not); you put one of those foam neck braces on her, maybe give her an eye patch for good measure. 

You tell her to periodically emit moans of pain. When you’re summing up your case before the 

jury, you spend most of your time talking about the horrible suffering your client has undergone 

since the incident in the produce aisle: the hospital stays, the grueling physical therapy, the 

addiction to pain medications, etc., etc.  

 

All of this is a classic fallacious appeal to emotion—specifically, in this case, pity. The people 

you’re trying to convince are the jurors. The conclusion you have to convince them of, presumably, 

is that Wal-Mart was negligent and hence legally liable in the matter of the grape on the floor. The 

details don’t matter, but there are specific conditions that have to be met—proved beyond a 

reasonable doubt—in order for the jury to find Wal-Mart guilty. But you’re not addressing those 

(probably because you can’t). Instead, you’re trying to distract the jury from the real issue by 

playing to their emotions. You’re trying to get them feeling sorry for your client, in the hopes that 

those emotions will cause them to bring in the verdict you want. That’s why the appeal to emotion 

is a Fallacy of Distraction: the goal is to divert your attention from the dispassionate evaluation of 

premises and the degree to which they support their conclusion, to get you thinking with your heart 

instead of your brain. 

 

Appeal to Force (Argumentum ad Baculum3) 
 

Perhaps the least subtle of the fallacies is the appeal to force, in which you attempt to convince 

your interlocutor to believe something by threatening him. Threats pretty clearly distract one from 

the business of dispassionately appraising premises’ support for conclusions, so it’s natural to 

classify this technique as a Fallacy of Distraction.  

 

There are many examples of this technique throughout history. In totalitarian regimes, there are 

often severe consequences for those who don’t toe the party line (see George Orwell’s 1984 for a 

vivid, though fictional, depiction of the phenomenon). The Catholic Church used this technique 

during the infamous Spanish Inquisition: the goal was to get non-believers to accept Christianity; 

the method was to torture them until they did.  

 

An example from much more recent history: when it became clear in 2016 that Donald Trump 

would be the Republican nominee for president, despite the fact that many rank-and-file 

Republicans thought he would be a disaster, the Chairman of the Republican National Committee 

(allegedly) sent a message to staffers informing them that they could either support Trump or leave 

their jobs. Not a threat of physical force, but a threat of being fired; same technique. 

 

                                                 
3 In Latin, ‘baculus’ refers to a stick or a club, which you could clobber someone with, presumably. 
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Again, the appeal to force is not usually subtle. But there is a very common, very effective debating 

technique that belongs under this heading, one that is a bit less overt than explicitly threatening 

someone who fails to share your opinions. It involves the sub-conscious, rather than conscious, 

perception of a threat.  

 

Here’s what you do: during the course of a debate, make yourself physically imposing; sit up in 

your chair, move closer to your opponent, use hand gestures, like pointing right in their face; cut 

them off in the middle of a sentence, shout them down, be angry and combative. If you do these 

things, you’re likely to make your opponent very uncomfortable—physically and emotionally. 

They might start sweating a bit; their heart may beat a little faster. They’ll get flustered and maybe 

trip over their words. They may lose their train of thought; winning points they may have made in 

the debate will come out wrong or not at all. You’ll look like the more effective debater, and the 

audience’s perception will be that you made the better argument. 

 

But you didn’t. You came off better because your opponent was uncomfortable. The discomfort 

was not caused by an actual threat of violence; on a conscious level, they never believed you were 

going to attack them physically. But you behaved in a way that triggered, at the sub-conscious 

level, the types of physical/emotional reactions that occur in the presence of an actual physical 

threat. This is the more subtle version of the appeal to force. It’s very effective and quite common 

(watch cable news talk shows and you’ll see it; Bill O’Reilly is the master). 

 

Straw Man 
 

This fallacy involves the misrepresentation of an opponent’s viewpoint—an exaggeration or 

distortion of it that renders it indefensible, something nobody in their right mind would agree with. 

You make your opponent out to be a complete wacko (even though he isn’t), then declare that you 

don’t agree with his (made-up) position. Thus, you merely appear to defeat your opponent: your 

real opponent doesn’t hold the crazy view you imputed to him; instead, you’ve defeated a distorted 

version of him, one of your own making, one that is easily dispatched. Instead of taking on the real 

man, you construct one out of straw, thrash it, and pretend to have achieved victory. It works if 

your audience doesn’t realize what you’ve done, if they believe that your opponent really holds 

the crazy view. 

 

Politicians are most frequently victims (and practitioners) of this tactic. After his 2005 State of the 

Union Address, President George W. Bush’s proposals were characterized thus: 

 

George W. Bush's State of the Union Address, masked in talk of "freedom" and 

"democracy," was an outline of a brutal agenda of endless war, global empire, and the 

destruction of what remains of basic social services.4 

 

Well who’s not against “endless war” and “destruction of basic social services”? That Bush guy 

must be a complete nut! But of course this characterization is a gross exaggeration of what was 

actually said in the speech, in which Bush declared that we must "confront regimes that continue 

to harbor terrorists and pursue weapons of mass murder" and rolled out his proposal for 

                                                 
4 International Action Center, Feb. 4 2005, http://iacenter.org/folder06/stateoftheunion.htm 
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privatization of Social Security accounts. Whatever you think of those actual policies, you need to 

do more to undermine them than to mic-characterize them as “endless war” and “destruction of 

social services.” That’s distracting your audience from the real substance of the issues. 

 

In 2009, during the (interminable) debate over President Obama’s healthcare reform bill—the 

Patient Protection and Affordable Care Act—former vice presidential candidate Sarah Palin took 

to Facebook to denounce the bill thus: 

 

The America I know and love is not one in which my parents or my baby with Down 

Syndrome will have to stand in front of Obama's "death panel" so his bureaucrats can 

decide, based on a subjective judgment of their "level of productivity in society," whether 

they are worthy of health care. Such a system is downright evil. 

 

Yikes! That sounds like the evilest bill in the history of evil! Bureaucrats euthanizing Down 

Syndrome babies and their grandparents? Holy Cow. ‘Death panel’ and ‘level of productivity in 

society’ are even in quotes. Did she pull those phrases from the text of the bill? 

 

Of course she didn’t. This is a completely insane distortion of what’s actually in the bill (the kernel 

of truth behind the “death panels” thing seems to be a provision in the Act calling for Medicare to 

fund doctor-patient conversations about end-of-life care); the non-partisan fact-checking outfit 

Politifact named it their “Lie of the Year” in 2009. Palin is not taking on the bill or the president 

themselves; she’s confronting a made-up version, defeating it (which is easy, because the made-

up bill is evil as heck; I can’t get the disturbing idea of a Kafkaesque Death Panel out of my head), 

and pretending to have won the debate. But this distraction only works if her audience believes her 

straw man is the real thing. Alas, many did. But of course this is why these techniques are used so 

frequently: they work. 

 

Red Herring 
 

This fallacy gets its name from the actual fish. When herring are smoked, they turn red and are 

quite pungent. Stinky things can be used to distract hunting dogs, who of course follow the trail of 

their quarry by scent; if you pass over that trail with a stinky fish and run off in a different direction, 

the hound may be distracted and follow the wrong trail. Whether or not this practice was ever used 

to train hunting dogs, as some suppose, the connection to logic and argumentation is clear. One 

commits the red herring fallacy when one attempts to distract one’s audience from the main thread 

of an argument, taking things off in a different direction. The diversion is often subtle, with the 

detour starting on a topic closely related to the original—but gradually wandering off into 

unrelated territory. The tactic is often (but not always) intentional: one commits the red herring 

fallacy because one is not comfortable arguing about a particular topic on the merits, often because 

one’s case is weak; so instead, the arguer changes the subject to an issue about which he feels more 

confident, makes strong points on the new topic, and pretends to have won the original argument.5 

                                                 
5 People often offer red herring arguments unintentionally, without the subtle deceptive motivation to change the 

subject—usually because they’re just parroting a red herring argument they heard from someone else. Sometimes a 

person’s response will be off-topic, apparently because they weren’t listening to their interlocutor or they’re confused 

for some reason. I prefer to label such responses as instances of Missing the Point (Ignoratio Elenchi), a fallacy that 

some books discuss at length, but which I’ve just relegated to a footnote. 
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A fictional example can illustrate the technique. Consider Frank, who, after a hard day at work, 

heads to the tavern to unwind. He has far too much to drink, and, unwisely, decides to drive home. 

Well, he’s swerving all over the road, and he gets pulled over by the police. Let’s suppose that 

Frank has been pulled over in a posh suburb where there’s not a lot of crime. When the police 

officer tells him he’s going to be arrested for drunk driving, Frank becomes belligerent:  

 

“Where do you get off? You’re barely even real cops out here in the ’burbs. All you do is 

sit around all day and pull people over for speeding and stuff. Why don’t you go investigate 

some real crimes? There’s probably some unsolved murders in the inner city they could 

use some help with. Why do you have to bother a hard-working citizen like me who just 

wants to go home and go to bed?” 

 

Frank is committing the red herring fallacy (and not very subtly). The issue at hand is whether or 

not he deserves to be arrested for driving drunk. He clearly does. Frank is not comfortable arguing 

against that position on the merits. So he changes the subject—to one about which he feels like he 

can score some debating points. He talks about the police out here in the suburbs, who, not having 

much serious crime to deal with, spend most of their time issuing traffic violations. Yes, maybe 

that’s not as taxing a job as policing in the city. Sure, there are lots of serious crimes in other 

jurisdictions that go unsolved. But that’s beside the point! It’s a distraction from the real issue of 

whether Frank should get a DUI. 

 

Politicians use the red herring fallacy all the time. Consider a debate about Social Security—a 

retirement stipend paid to all workers by the federal government. Suppose a politician makes the 

following argument: 

 

We need to cut Social Security benefits, raise the retirement age, or both. As the baby boom 

generation reaches retirement age, the amount of money set aside for their benefits will not 

be enough cover them while ensuring the same standard of living for future generations 

when they retire. The status quo will put enormous strains on the federal budget going 

forward, and we are already dealing with large, economically dangerous budget deficits 

now. We must reform Social Security. 

 

Now imagine an opponent of the proposed reforms offering the following reply: 

 

Social Security is a sacred trust, instituted during the Great Depression by FDR to insure 

that no hard-working American would have to spend their retirement years in poverty. I 

stand by that principle. Every citizen deserves a dignified retirement. Social Security is a 

more important part of that than ever these days, since the downturn in the stock market 

has left many retirees with very little investment income to supplement government 

support. 

 

The second speaker makes some good points, but notice that they do not speak to the assertion 

made by the first: Social Security is economically unsustainable in its current form. It’s possible 

to address that point head on, either by making the case that in fact the economic problems are 

exaggerated or non-existent, or by making the case that a tax increase could fix the problems. The 
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respondent does neither of those things, though; he changes the subject, and talks about the 

importance of dignity in retirement. I’m sure he’s more comfortable talking about that subject than 

the economic questions raised by the first speaker, but it’s a distraction from that issue—a red 

herring.  

 

Perhaps the most blatant kind of red herring is evasive: used especially by politicians, this is the 

refusal to answer a direct question by changing the subject. Examples are almost too numerous to 

cite; to some degree, no politician ever answers difficult questions straightforwardly (there’s an 

old axiom in politics, put nicely by Robert McNamara: “Never answer the question that is asked 

of you. Answer the question that you wish had been asked of you.”).  

 

A particularly egregious example of this occurred in 2009 on CNN’s Larry King Live. Michele 

Bachmann, Republican Congresswoman from Minnesota, was the guest. The topic was 

“birtherism,” the (false) belief among some that Barack Obama was not in fact born in America 

and was therefore not constitutionally eligible for the presidency. After playing a clip of Senator 

Lindsey Graham (R, South Carolina) denouncing the myth and those who spread it, King asked 

Bachmann whether she agreed with Senator Graham. She responded thus: 

 

"You know, it's so interesting, this whole birther issue hasn't even been one that's ever been 

brought up to me by my constituents. They continually ask me, where's the jobs? That's 

what they want to know, where are the jobs?” 

 

Bachmann doesn’t want to respond directly to the question. If she outright declares that the 

“birthers” are right, she looks crazy for endorsing a clearly false belief. But if she denounces them, 

she alienates a lot of her potential voters who believe the falsehood. Tough bind. So she blatantly, 

and rather desperately, tries to change the subject. Jobs! Let’s talk about those instead. Please? 

 

Argumentum ad Hominem 

 

Everybody always used the Latin for this one—usually shortened to just ‘ad hominem’, which 

means ‘at the person’. You commit this fallacy when, instead of attacking your opponent’s views, 

you attack your opponent himself.  

 

This fallacy comes in a lot of different forms; there are a lot of different ways to attack a person 

while ignoring (or downplaying) their actual arguments. To organize things a bit, we’ll divide the 

various ad hominem attacks into two groups: Abusive and Circumstantial. 

 

Abusive ad hominem is the more straightforward of the two. The simplest version is simply calling 

your opponent names instead of debating him. Donald Trump has mastered this technique. During 

the 2016 Republican presidential primary, he came up with catchy little nicknames for his 

opponents, which he used just about every time he referred to them: “Lyin’ Ted” Cruz, “Little 

Marco” Rubio, “Low-Energy Jeb” Bush. If you pepper your descriptions of your opponent with 

tendentious, unflattering, politically charged language, you can get a rhetorical leg-up. Here’s 

another example, from Wisconsin Supreme Court Justice Rebecca Bradley reacting to the election 

of Bill Clinton in her college newspaper: 
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Congratulations everyone. We have now elected a tree-hugging, baby-killing, pot-

smoking, flag-burning, queer-loving, draft-dodging, bull-spouting ’60s radical socialist 

adulterer to the highest office in our nation. Doesn’t it make you proud to be an American? 

We’ve just had an election which proves that the majority of voters are either totally stupid 

or entirely evil.6 

 

Whoa. I guess that one speaks for itself. 

 

Another abusive ad hominem attack is guilt by association. Here, you tarnish your opponent by 

associating him or his views with someone or something that your audience despises. Consider the 

following: 

 

Former Vice President Dick Cheney was an advocate of a strong version of the so-called 

Unitary Executive interpretation of the Constitution, according to which the president’s 

control over the executive branch of government is quite firm and far-reaching. The effect 

of this is to concentrate a tremendous amount of power in the Chief Executive, such that 

those powers arguably eclipse those of the supposedly co-equal Legislative and Judicial 

branches of government. You know who else was in favor of a very strong, powerful Chief 

Executive? That’s right, Hitler. 

 

We just compared Dick Cheney to Hitler. Ouch. Nobody likes Hitler, so…. Not every comparison 

like this is fallacious, of course. But in this case, where the connection is particularly flimsy, we’re 

clearly pulling a fast one.7 

 

The circumstantial ad hominem fallacy is not as blunt an instrument as its abusive counterpart. It 

also involves attacking one’s opponent, focusing on some aspect of his person—his 

circumstances—as the core of the criticism. This version of the fallacy comes in many different 

forms, and some of the circumstantial criticisms involved raise legitimate concerns about the 

relationship between the arguer and his argument. They only rise (sink?) to the level of fallacy 

when these criticisms are taken to be definitive refutations, which, on their own, they cannot be. 

 

To see what we’re talking about, consider the circumstantial ad hominem attack that points out 

one’s opponent’s self-interest in making the argument he does. Consider: 

 

A recent study from scientists at the University of Minnesota claims to show that 

glyphosate—the main active ingredient in the widely used herbicide Roundup—is safe for 

humans to use. But guess whose business school just got a huge donation from Monsanto, 

the company that produces Roundup? That’s right, the University of Minnesota. Ever hear 

of conflict of interest? This study is junk, just like the product it’s defending.  

 

                                                 
6 Marquette Tribune, 11/11/92 
7 Comparing your opponent to Hitler—or the Nazis—is quite common. Some clever folks came up with a fake-Latin 

term for the tactic: Argumentum ad Nazium (cf. the real Latin phrase, ad nauseum—to the point of nausea). Such 

comparisons are so common that author Mike Godwin formulated “Godwin's Law of Nazi Analogies: As an online 

discussion grows longer, the probability of a comparison involving Nazis or Hitler approaches one.” (“Meme, 

Counter-meme”, Wired, 10/1/94) 
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This is a fallacy. It doesn’t follow from the fact that the University received a grant from Monsanto 

that scientists working at that school faked the results of a study. But the fact of the grant does 

raise a red flag. There may be some conflict of interest at play. Such things have happened in the 

past (e.g., studies funded by Big Tobacco showing that smoking is harmless). But raising the 

possibility of a conflict is not enough, on its own, to show that the study in question can be 

dismissed out of hand. It may be appropriate to subject it to heightened scrutiny, but we cannot 

shirk our duty to assess its arguments on their merits. 

 

A similar thing happens when we point to the hypocrisy of someone making a certain argument—

when their actions are inconsistent with the conclusion they’re trying to convince us of. Consider 

the following: 

 

The head of the local branch of the American Federation of Teachers union wrote an op-

ed yesterday in which she defended public school teachers from criticism and made the 

case that public schools’ quality has never been higher. But guess what? She sends her own 

kids to private schools out in the suburbs! What a hypocrite. The public school system is a 

wreck and we need more accountability for teachers. 

 

This passage makes a strong point, but then commits a fallacy. It would appear that, indeed, the 

AFT leader is hypocritical; her choice to send her kids to private schools suggests (but doesn’t 

necessarily prove) that she doesn’t believe her own assertions about the quality of public schools. 

Again, this raises a red flag about her arguments; it’s a reason to subject them to heightened 

scrutiny. But it is not a sufficient reason to reject them out of hand, and to accept the opposite of 

her conclusions. That’s committing a fallacy. She may have perfectly good reasons, having nothing 

to do with the allegedly low quality of public schools, for sending her kids to the private school in 

the suburbs. Or she may not. She may secretly think, deep down, that her kids would be better off 

not going to public schools. But none of this means her arguments in the op-ed should be 

dismissed; it’s beside the point. Do her premises back up her conclusion? Are her premises true? 

That’s how we evaluate an argument; hypocrisy on the part of the arguer doesn’t relieve us of the 

responsibility to conduct thorough, dispassionate logical analysis. 

 

A very specific version of the circumstantial ad hominem, one that involves pointing out one’s 

opponent’s hypocrisy, is worth highlighting, since it happens so frequently. It has its own Latin 

name: tu quoque, which translates roughly as “you, too.” This is the “I know you are but what am 

I?” fallacy; the “pot calling the kettle black”; “look who’s talking”. It’s a technique used in very 

specific circumstances: your opponent accuses you of doing or advocating something that’s wrong, 

and, instead of making an argument to defend the rightness of your actions, you simply throw the 

accusation back in your opponent’s face—they did it too. But that doesn’t make it right! 

 

An example. In February 2016, Supreme Court Justice Antonin Scalia died unexpectedly. 

President Obama, as is his constitutional duty, nominated a successor. The Senate is supposed to 

‘advise and consent’ (or not consent) to such nominations, but instead of holding hearings on the 

nominee (Merrick Garland), the Republican leaders of the Senate declared that they wouldn’t even 

consider the nomination. Since the presidential primary season had already begun, they reasoned, 

they should wait until the voters has spoken and allow the new president to make a nomination. 

Democrats objected strenuously, arguing that the Republicans were shirking their constitutional 
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duty. The response was classic tu quoque. A conservative writer asked, “Does any sentient human 

being believe that if the Democrats had the Senate majority in the final year of a conservative 

president’s second term—and Justice [Ruth Bader] Ginsburg’s seat came open—they would 

approve any nominee from that president?”8 Senate Majority Leader Mitch McConnell said that 

he was merely following the “Biden Rule,” a principle advocated by Vice President Joe Biden 

when he was a Senator, back in the election year of 1992, that then-President Bush should wait 

until after the election season was over before appointing a new Justice (the rule was hypothetical; 

there was no Supreme Court vacancy at the time). 

 

This is a fallacious argument. Whether or not Democrats would do the same thing if the 

circumstances were reversed is irrelevant to determining whether that’s the right, constitutional 

thing to do.  

 

The final variant of the circumstantial ad hominem fallacy is perhaps the most egregious. It’s 

certainly the most ambitious: it’s a preemptive attack on one’s opponent to the effect that, because 

of the type of person he is, nothing he says on a particular topic can be taken seriously; he is 

excluded entirely from debate. It’s called poisoning the well. This phrase was coined by the famous 

19th century Catholic intellectual John Henry Cardinal Newman, who was a victim of the tactic. In 

the course of a dispute he was having with the famous Protestant intellectual Charles Kingsley, 

Kingsley is said to have remarked that anything Newman said was suspect, since, as a Catholic 

priest, his first allegiance was not to the truth (but rather to the Pope). As Newman rightly pointed 

out, this remark, if taken seriously, has the effect of rendering it impossible for him or any other 

Catholic to participate in any debate whatsoever. He accused Kingsley of “poisoning the wells.”  

 

We poison the well when we exclude someone from a debate because of who they are. Imagine an 

Englishman saying something like, “It seems to me that you Americans should reform your 

healthcare system. Costs over here are much higher than they are in England. And you have 

millions of people who don’t even have access to healthcare. In the UK, we have the NHS 

(National Health Service); medical care is a basic right of every citizen.” Suppose an American 

responded by saying, “What you know about it, Limey? Go back to England.” That would be 

poisoning the well (with a little name-calling thrown in). The Englishman is excluded from 

debating American healthcare just because of who he is—an Englishman, not an American. 

 

 

III.  Fallacies of Weak Induction 

 

As their name suggests, what these fallacies have in common is that they are bad—that is, weak—

inductive arguments. Recall, inductive arguments attempt to provide premises that make their 

conclusions more probable. We evaluate them according to how probable their conclusions are in 

light of their premises: the more probable the conclusion (given the premises), the stronger the 

argument; the less probable, the weaker. The fallacies of weak induction are arguments whose 

premises do not make their conclusions very probable—but that are nevertheless often successful 

in convincing people of their conclusions. We will discuss five informal fallacies that fall under 

this heading. 

                                                 
8 David French, National Review, 2/14/16 
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Argument from Ignorance (Argumentum ad Ignorantiam) 
 

This is a particularly egregious and perverse fallacy. In essence, it’s an inference from premises to 

the effect that there’s a lack of knowledge about some topic to a definite conclusion about that 

topic. We don’t know; therefore, we know! 

 

Of course, put that baldly, it’s plainly absurd; actual instances are more subtle. The fallacy comes 

in a variety of closely related forms. It will be helpful to state them in bald/absurd schematic 

fashion first, then elucidate with more subtle real-life examples. 

 

The first form can be put like this: 

 

Nobody knows how to explain phenomenon X. 

/ My crazy theory about X is true. 

 

That sounds silly, but consider an example: those “documentary” programs on cable TV about 

aliens. You know, the ones where they suggest that extraterrestrials built the pyramids or 

something (there are books and websites, too). How do they get you to believe that crazy theory? 

By creating mystery! By pointing to facts that nobody can explain. The Great Pyramid at Giza is 

aligned (almost) exactly with the magnetic north pole! On the day of the summer solstice, the sun 

sets exactly between two of the pyramids! The height of the Great Pyramid is (almost) exactly one 

one-millionth the distance from the Earth to the Sun! How could the ancient Egyptians have such 

sophisticated astronomical and geometrical knowledge? Why did the Egyptians, careful record-

keepers in (most) other respects, (apparently) not keep detailed records of the construction of the 

pyramids? Nobody knows. Conclusion: aliens built the pyramids. 

 

In other words, there are all sorts of (sort of) surprising facts about the pyramids, and nobody 

knows how to explain them. From these premises, which establish only our ignorance, we’re 

encouraged to conclude that we know something: aliens built the pyramids. That’s quite a leap—

too much of a leap. 

 

Another form this fallacy takes can be put crudely thus: 

 

Nobody can PROVE that I’m wrong.____ 

/ I’m right.  

 

The word ‘prove’ is in all-caps because stressing it is the key to this fallacious argument: the 

standard of proof is set impossibly high, so that almost no amount of evidence would constitute a 

refutation of the conclusion. 

 

An example will help. There are lots of people who claim that evolutionary biology is a lie: there’s 

no such thing as evolution by natural selection, and it’s especially false to claim that humans 

evolved from earlier species, that we share a common ancestor with apes. Rather, the story goes, 

the Bible is literally true: the Earth is only about 6,000 years old, and humans were created as-is 

by God just as the Book of Genesis describes. The Argument from Ignorance is one of the favored 

techniques of proponents of this view. They are especially fond of pointing to “gaps” in the fossil 
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record—the so-called “missing link” between humans and a pre-human, ape-like species—and 

claim that the incompleteness of the fossil record vindicates their position.  

 

But this argument is an instance of the fallacy. The standard of proof—a complete fossil record 

without any gaps—is impossibly high. Evolution has been going on for a LONG time (the Earth 

is actually about 4.5 billion years old, and living things have been around for at least 3.5 billion 

years). So many species have appeared and disappeared over time that it’s absurd to think that we 

could even come close to collecting fossilized remains of anything but the tiniest fraction of them. 

It’s hard to become a fossil, after all: a creature has to die under special circumstances to even have 

a chance for its remains to do anything than turn into compost. And we haven’t been searching for 

fossils in a systematic way for very long (only since the mid-1800s or so). It’s no surprise that 

there are gaps in the fossil record, then. What’s surprising, in fact, is that we have as rich a fossil 

record as we do. Many, many transitional species have been discovered, both between humans and 

their ape-like ancestors, and between other modern species and their distant forbears (whales used 

to be land-based creatures, for example; we know this (in part) from the fossils of early proto-

whale species with longer and longer rear hip- and leg-bones).  

 

We will never have a fossil record complete enough to satisfy skeptics of evolution. But their 

standard is unreasonably high, so their argument is fallacious. Sometimes they put it even more 

simply: nobody was around to witness evolution in action; therefore, it didn’t happen. This is 

patently absurd, but it follows the same pattern: an unreasonable standard of proof (witnesses to 

evolution in action; impossible, since it takes place over such a long period of time), followed by 

the leap to the unwarranted conclusion. 

 

Yet another version of the Argument from Ignorance goes like this: 

 

I can’t imagine/understand how X could be true. 

/ X is false. 

 

Of course lack of imagination on the part of an individual isn’t evidence for or against a 

proposition, but people often argue this way. A (hilarious) example comes from the rap duo Insane 

Clown Posse in their 2009 single, “Miracles”. Here’s the line: 

 

Water, fire, air and dirt 

F**king magnets, how do they work? 

And I don’t wanna talk to a scientist 

Y’all mother**kers lying, and getting me pissed. 

 

Violent J and Shaggy 2 Dope can’t understand how there could be a scientific, non-miraculous 

explanation for the workings of magnets. They conclude, therefore, that magnets are miraculous. 

 

A final form of the Argument from Ignorance can be put crudely thus: 

 

No evidence has been found that X is true. 

/ X is false. 
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You may have heard the slogan, “Absence of evidence is not evidence of absence.” This is an 

attempt to sum up this version of the fallacy. But it’s not quite right. What it should say is that 

absence of evidence is not always definitive evidence of absence. An example will help illustrate 

the idea. During the 2016 presidential campaign, a reporter (David Fahrentold) took to Twitter to 

announce that despite having “spent weeks looking for proof that [Donald Trump] really does give 

millions of his own [money] to charity…” he could only find one donation, to the NYC Police 

Athletic League. Trump has claimed to have given millions of dollars to charities over the years. 

Does this reporter’s failure to find evidence of such giving prove that Trump’s claims about his 

charitable donations are false? No. To rely only on this reporter’s testimony to draw such a 

conclusion would be to commit the fallacy. 

 

However, the failure to uncover evidence of charitable giving does provide some reason to suspect 

Trump’s claims may be false. How much of a reason depends on the reporter’s methods and 

credibility, among other things.9 But sometimes a lack of evidence can provide strong support for 

a negative conclusion. This is an inductive argument; it can be weak or strong. For example, 

despite multiple claims over many years (centuries, if some sources can be believed), no evidence 

has been found that there’s a sea monster living in Loch Ness in Scotland. Given the size of the 

body of water, and the extensiveness of the searches, this is pretty good evidence that there’s no 

such creature—a strong inductive argument to that conclusion. To claim otherwise—that there is 

such a monster, despite the lack of evidence—would be to commit the version of the fallacy 

whereby one argues “You can’t PROVE I’m wrong; therefore, I’m right,” where the standard of 

proof is unreasonably high. 

 

One final note on this fallacy: it’s common for people to mislabel certain bad arguments as 

arguments from ignorance; namely, arguments made by people who obviously don’t know what 

the heck they’re talking about. People who are confused or ignorant about the subject on which 

they’re offering an opinion are liable to make bad arguments, but the fact of their ignorance is not 

enough to label those arguments as instances of the fallacy. We reserve that designation for 

arguments that take the forms canvassed above: those that rely on ignorance—and not just that of 

the arguer, but of the audience as well—as a premise to support the conclusion. 

 

Appeal to Inappropriate Authority  
 

One way of making an inductive argument—of lending more credence to your conclusion—is to 

point to the fact that some relevant authority figure agrees with you. In law, for example, this kind 

of argument is indispensable: appeal to precedent (Supreme Court rulings, etc.) is the attorney’s 

bread and butter. And in other contexts, this kind of move can make for a strong inductive 

argument. If I’m trying to convince you that fluoridated drinking water is safe and beneficial, I can 

point to the Centers for Disease Control, where a wealth of information supporting that claim can 

be found.10 Those people are scientists and doctors who study this stuff for a living; they know 

what they’re talking about. 

 

                                                 
9 And, in fact, Fahrentold subsequently performed and documented (in the Washington Post on 9/12/16) a rather 

exhaustive unsuccessful search for evidence of charitable giving, providing strong support for the conclusion that 

Trump didn’t give as he’d claimed. 
10 Check it out: https://www.cdc.gov/fluoridation/ 

https://www.cdc.gov/fluoridation/
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One commits the fallacy when one points to the testimony of someone who’s not an authority on 

the issue at hand. This is a favorite technique of advertisers. We’ve all seen celebrity endorsements 

of various products. Sometimes the celebrities are appropriate authorities: there was a Buick 

commercial from 2012 featuring Shaquille O’Neal, the Hall of Fame basketball player, testifying 

to the roominess of the car’s interior (despite its compact size). Shaq, a very, very large man, is an 

appropriate authority on the roominess of cars! But when Tiger Woods was shilling for Buicks a 

few years earlier, it wasn’t at all clear that he had any expertise to offer about their merits relative 

to other cars. Woods was an inappropriate authority; those ads committed the fallacy. 

 

Usually, the inappropriateness of the authority being appealed to is obvious. But sometimes it isn’t. 

A particularly subtle example is AstraZeneca’s hiring of Dr. Phil McGraw in 2016 as a 

spokesperson for their diabetes outreach campaign. AstraZeneca is a drug manufacturing 

company. They make a diabetes drug called Bydureon. The aim of the outreach campaign, 

ostensibly, is to increase awareness among the public about diabetes; but of course the real aim is 

to sell more Bydureon. A celebrity like Dr. Phil can help. Is he an appropriate authority? That’s a 

hard question to answer. It’s true that Dr. Phil had suffered from diabetes himself for 25 years, and 

that he personally takes the medication. So that’s a mark in his favor, authority-wise. But is that 

enough? We’ll talk about how feeble Phil’s sort of anecdotal evidence is in supporting general 

claims (in this case, about a drug’s effectiveness) when we discuss the hasty generalization fallacy; 

suffice it to say, one person’s positive experience doesn’t prove that the drug is effective. But, Dr. 

Phil isn’t just a person who suffers from diabetes; he’s a doctor! It’s right there in his name 

(everybody always simply refers to him as ‘Dr. Phil’). Surely that makes him an appropriate 

authority on the question of drug effectiveness. Or maybe not. Phil McGraw is not a medical 

doctor; he’s a PhD. He has a doctorate in Psychology. He’s not a licensed psychologist; he cannot 

legally prescribe medication. He has no relevant professional expertise about drugs and their 

effectiveness. He is not an appropriate authority in this case. He looks like one, though, which 

makes this a very sneaky, but effective, advertising campaign. 

 

Post hoc ergo propter hoc 

 

Here’s another fallacy for which people always use the Latin, usually shortening it to ‘post hoc’. 

The whole phrase translates to ‘After this, therefore because of this’, which is a pretty good 

summation of the pattern of reasoning involved. Crudely and schematically, it looks like this: 

 

X occurred before Y. 

/ X caused Y. 

 

This is not a good inductive argument. That one event occurred before another gives you some 

reason to believe it might be the cause—after all, X can’t cause Y if it happened after Y did—but 

not nearly enough to conclude that it is the cause. A silly example: I, your humble author, was 

born on June 19th, 1974; this was just shortly before a momentous historical event, Richard Nixon’s 

resignation of the Presidency on August 9th later that summer. My birth occurred before Nixon’s 

resignation; but this is (obviously!) not a reason to think that it caused his resignation. 

 

Though this kind of reasoning is obviously shoddy—a mere temporal relationship clearly does not 

imply a causal relationship—it is used surprisingly often. In 2012, New York Yankees shortstop 
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Derek Jeter broke his ankle. It just so happened that this event occurred immediately after another 

event, as Donald Trump pointed out on Twitter: “Derek Jeter broke ankle one day after he sold his 

apartment in Trump World Tower.” Trump followed up: “Derek Jeter had a great career until 3 

days ago when he sold his apartment at Trump World Tower- I told him not to sell- karma?” No, 

Donald, not karma; just bad luck. 

 

Nowhere is this fallacy more in evidence than in our evaluation of the performance of presidents 

of the United States. Everything that happens during or immediately after their administrations 

tends to be pinned on them. But presidents aren’t all-powerful; they don’t cause everything that 

happens during their presidencies. On July 9th, 2016, a short piece appeared in the Washington 

Post with the headline “Police are safer under Obama than they have been in decades”. What does 

a president have to do with the safety of cops? Very little, especially compared to other factors like 

poverty, crime rates, policing practices, rates of gun ownership, etc., etc., etc. To be fair, the article 

was aiming to counter the equally fallacious claims that increased violence against police was 

somehow caused by Obama. Another example: in October 2015, US News & World Report 

published an article asking (and purporting to answer) the question, “Which Presidents Have Been 

Best for the Economy?” It had charts listing GDP growth during each administration since 

Eisenhower. But while presidents and their policies might have some effect on economic growth, 

their influence is certainly swamped by other factors. Similar claims on behalf of state governors 

are even more absurd. At the 2016 Republican National Convention, Governors Scott Walker and 

Mike Pence—of Wisconsin and Indiana, respectively—both pointed to record-high employment 

in their states as vindication of their conservative, Republican policies. But some other states were 

also experiencing record-high employment at the time: California, Minnesota, New Hampshire, 

New York, Washington. Yes, they were all controlled by Democrats. Maybe there’s a separate 

cause for those strong jobs numbers in differently governed states? Possibly it has something to 

do with the improving economy and overall health of the job market in the whole country? 

 

Slippery Slope 

 

Like the post hoc fallacy, the slippery slope fallacy is a weak inductive argument to a conclusion 

about causation. This fallacy involves making an insufficiently supported claim that a certain 

action or event will set off an unstoppable causal chain-reaction—putting us on a slippery slope—

leading to some disastrous effect.  

 

This style of argument was a favorite tactic of religious conservatives who opposed gay marriage. 

They claimed that legalizing same-sex marriage would put the nation on a slippery slope to 

disaster. Famous Christian leader Pat Robertson, on his television program The 700 Club, puts the 

case nicely. When asked about gay marriage, he responded with this: 

 

We haven’t taken this to its ultimate conclusion. You’ve got polygamy out there. How can 

we rule that polygamy is illegal when you say that homosexual marriage is legal? What is 

it about polygamy that’s different? Well, polygamy was outlawed because it was 

considered immortal according to Biblical standards. But if we take Biblical standards 

away in homosexuality, well what about the other? And what about bestiality? And 

ultimately what about child molestation and pedophilia? How can we criminalize these 

things, at the same time have Constitutional amendments allowing same-sex marriage 
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among homosexuals? You mark my words, this is just the beginning of a long downward 

slide in relation to all the things that we consider to be abhorrent. 

 

This a classic slippery slope fallacy; he even uses the phrase ‘long downward slide’! The claim is 

that allowing gay marriage will force us to decriminalize polygamy, bestiality, child molestation, 

pedophilia—and ultimately, “all the things that we consider to be abhorrent.” Yikes! That’s a lot 

of things. Apparently, gay marriage will lead to utter anarchy. 

 

There are genuine slippery slopes out there—unstoppable causal chain-reactions. But this isn’t one 

of them. The mark of the slippery slope fallacy is the assertion that the chain can’t be stopped, 

with reasons that are insufficient to back up that assertion. In this case, Pat Robertson has given us 

the abandonment of “Biblical standards” as the lubrication for the slippery slope. But this is 

obviously insufficient. Biblical standards are expressly forbidden, by the “establishment clause” 

of the First Amendment to the U.S. Constitution, from forming the basis of the legal code. The 

slope is not slippery. As recent history has shown, the legalization of same sex marriage does not 

lead to the acceptance of bestiality and pedophilia; the argument is fallacious. 

 

Fallacious slippery slope arguments have long been deployed to resist social change. Those 

opposed to the abolition of slavery warned of economic collapse and social chaos. Those who 

opposed women’s suffrage asserted that it would lead to the dissolution of the family, rampant 

sexual promiscuity, and social anarchy. Of course none of these dire predictions came true; the 

slopes simply weren’t slippery. 

 

Hasty Generalization 

 

Many inductive arguments involve an inference from particular premises to a general conclusion; 

this is generalization. For example, if you make a bunch of observations every morning that the 

sun rises in the east, and conclude on that basis that, in general, the sun always rises in the east, 

this is a generalization. And it’s a good one! With all those particular sunrise observations as 

premises, your conclusion that the sun always rises in the east has a lot of support; that’s a strong 

inductive argument.  

 

One commits the hasty generalization fallacy when one makes this kind of inference based on an 

insufficient number of particular premises, when one is too quick—hasty—in inferring the general 

conclusion. 

 

People who deny that global warming is a genuine phenomenon often commit this fallacy. In 

February of 2015, the weather was unusually cold in Washington, DC. Senator James Inhofe of 

Oklahoma famously took to the Senate floor wielding a snowball. “In case we have forgotten, 

because we keep hearing that 2014 has been the warmest year on record, I ask the chair, ‘You 

know what this is?’ It’s a snowball, from outside here. So it’s very, very cold out. Very 

unseasonable.” He then tossed the snowball at his colleague, Senator Bill Cassidy of Louisiana, 

who was presiding over the debate, saying, “Catch this.” 

 

Senator Inhofe commits the hasty generalization fallacy. He’s trying to establish a general 

conclusion—that 2014 wasn’t the warmest year on record, or that global warming isn’t really 
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happening (he’s on the record that he considers it a “hoax”). But the evidence he presents is 

insufficient to support such a claim. His evidence is an unseasonable coldness in a single place on 

the planet, on a single day. We can’t derive from that any conclusions about what’s happening, 

temperature-wise, on the entire planet, over a long period of time. That the earth is warming is not 

a claim that everywhere, at every time, it will always be warmer than it was; the claim is that, on 

average, across the globe, temperatures are rising. This is compatible with a couple of cold snaps 

in the nation’s capital. 

 

Many people are susceptible to hasty generalizations in their everyday lives. When we rely on 

anecdotal evidence to make decisions, we commit the fallacy. Suppose you’re thinking of buying 

a new car, and you’re considering a Subaru. Your neighbor has a Subaru. So what do you do? You 

ask your neighbor how he likes his Subaru. He tells you it runs great, hasn’t given him any trouble. 

You then, fallaciously, conclude that Subarus must be terrific cars. But one person’s testimony 

isn’t enough to justify that conclusion; you’d need to look at many, many more drivers’ 

experiences to reach such a conclusion (this is why the magazine Consumer Reports is so useful). 

 

A particularly pernicious instantiation of the Hasty Generalization fallacy is the development of 

negative stereotypes. People often make general claims about religious or racial groups, ethnicities 

and nationalities, based on very little experience with them. If you once got mugged by a Puerto 

Rican, that’s not a good reason to think that, in general, Puerto Ricans are crooks. If a waiter at a 

restaurant in Paris was snooty, that’s no reason to think that French people are stuck up. And yet 

we see this sort of faulty reasoning all the time.  

 

 

IV.  Fallacies of Illicit Presumption 

 

This is a family of fallacies whose common characteristic is that they (often tacitly, implicitly) 

presume the truth of some claim that they’re not entitled to. They are arguments with a premise 

(again, often hidden) that is assumed to be true, but is actually a controversial claim, which at best 

requires support that’s not provided, which at worst is simply false. We will look at six fallacies 

under this heading. 

 

Accident 
 

This fallacy is the reverse of the hasty generalization. That was a fallacious inference from 

insufficient particular premises to a general conclusion; accident is a fallacious inference from a 

general premise to a particular conclusion. What makes it fallacious is an illicit presumption: the 

general rule in the premise is assumed, incorrectly, not to have any exceptions; the particular 

conclusion fallaciously inferred is one of the exceptional cases. 

 

Here’s a simple example to help make that clear: 

 

Cutting people with knives is illegal. 

Surgeons cut people with knives. 

/ Surgeons should be arrested. 
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One of the premises is the general claim that cutting people with knives is illegal. While this is 

true in almost all cases, there are exceptions—surgery among them. We pay surgeons lots of 

money to cut people with knives! It is therefore fallacious to conclude that surgeons should be 

arrested, since they are an exception to the general rule. The inference only goes through if we 

presume, incorrectly, that the rule is exceptionless. 

 

Another example. Suppose I volunteer at my first grade daughter’s school; I go in to her class one 

day to read a book aloud to the children. As I’m sitting down on the floor with the kiddies, criss-

cross applesauce, as they say, I realize that I can’t comfortably sit that way because of the .44 

Magnum revolver that I have tucked into my waistband.11 So I remove the piece from my pants 

and set it down on the floor in front of me, among the circled-up children. The teacher screams 

and calls the office, the police are summoned, and I’m arrested. As they’re hauling me out of the 

room, I protest: “The Second Amendment to the Constitution guarantees my right to keep and bear 

arms! This state has a ‘concealed carry’ law, and I have a license to carry that gun! Let me go!” 

 

I’m committing the fallacy of Accident in this story. True, the Second Amendment guarantees the 

right to keep and bear arms; but that rule is not without exceptions. Similarly, concealed carry laws 

also have exceptions—among them being a prohibition on carrying weapons into elementary 

schools. My insistence on being released only makes sense if we presume, incorrectly, that the 

legal rules I’m citing are without exception. 

 

One more example from real life. After the financial crisis in 2008, the Federal Reserve—the 

central bank in the United States, whose task it is to create conditions leading to full employment 

and moderate inflation—found itself in a bind. The economy was in a free-fall, and unemployment 

rates were skyrocketing, but the usual tool it used to mitigate such problems—cutting the short-

term federal funds rate (an interest rate banks charge each other for overnight loans)—was 

unavailable, because they had already cut the rate to zero (the lowest it could go). So they had to 

resort to unconventional monetary policies, among them something called “quantitative easing”. 

This involved the purchase, by the Federal Reserve, of financial assets like mortgage-backed 

securities and longer-term government debt (Treasury notes).12 

 

Now, the nice thing about being the Federal Reserve is that when you want to buy something—in 

this case a bunch of financial assets—it’s really easy to pay for it: you have the power to create 

new money out of thin air! That’s what the Federal Reserve does; it controls the amount of money 

that exists. So if the Fed wants to buy, say, $10 million worth of securities from Bank of America, 

they just press a button and presto—$10 million dollars that didn’t exist a second ago comes into 

being as an asset of Bank of America.13 

 

This quantitative easing policy was controversial. Many people worried that it would lead to 

runaway inflation. Generally speaking, the more money there is, the less each bit of it is worth. So 

creating more money makes things cost more—inflation. The Fed was creating money on a very 

large scale—on the order of a trillion dollars. Shouldn’t that lead to a huge amount of inflation? 

                                                 
11 That’s Dirty Harry’s gun, “the most powerful handgun in the world.” 
12 The hope was to push down interest rates on mortgages and government debt, encouraging people to buy houses 

and spend money instead of saving it—thus stimulating the economy. 
13 It’s obviously a bit more complicated than that, but that’s the essence of it. 



48 Fundamental Methods of Logic 

 

 

Economist Art Laffer thought so. In June of 2009, he wrote an op-ed in the Wall Street Journal 

warning that “[t]he unprecedented expansion of the money supply could make the '70s look 

benign.”14 (There was a lot of inflation in the ’70s.) 

 

Another famous economist, Paul Krugman, accused Laffer of committing the fallacy of accident. 

While it’s generally true that an increase in the supply of money leads to inflation, that rule is not 

without exceptions. He had described such exceptional circumstances in 199815, and pointed out 

that the economy of 2009 was in that condition (which economists call a “liquidity trap”): “Let me 

add, for the 1.6 trillionth time, we are in a liquidity trap. And in such circumstances a rise in the 

monetary base does not lead to inflation.”16 

 

It turns out Krugman was correct. The expansion of the monetary supply did not lead to runaway 

inflation; as a matter of fact, inflation remained below the level that the Federal Reserve wanted, 

barely moving at all. Laffer had indeed committed the fallacy of accident. 

 

Begging the Question (Petitio Principii) 
 

First things first: ‘begging the question’ is not synonymous with ‘raising the question’; this is an 

extremely common usage, but it is wrong. You might hear a newscaster say, “Today Donald 

Trump’s private jet was spotted at the Indianapolis airport, which begs the question: ‘Will he 

choose Indiana Governor Mike Pence as running mate?’” This is a mistaken usage of ‘begs the 

question’; the newscaster should have said ‘raises the question’ instead. 

 

'Begging the question' is a translation of the Latin ‘petitio principii’, which refers to the practice 

of asking (begging, petitioning) your audience to grant you the truth of a claim (principle) as a 

premise in an argument—but it turns out that the claim you're asking for is either identical to, or 

presupposes the truth of, the very conclusion of the argument you're trying to make.  

 

In other words, when you beg the question, you're arguing in a circle: one of the reasons for 

believing the conclusion is the conclusion itself! It’s a Fallacy of Illicit Presumption where the 

proposition being presumed is the very proposition you’re trying to demonstrate; that’s clearly an 

illicit presumption. 

 

Here’s a stark example. If I'm trying to convince you that Donald Trump is a dangerous idiot (the 

conclusion of my argument is ‘Donald Trump is a dangerous idiot’), then I can't ask you to grant 

me the claim ‘Donald Trump is a dangerous idiot’. The premise can't be the same as the conclusion. 

Imagine a conversation: 

 

Me: “Donald Trump is a dangerous idiot.” 

You: “Really? Why do you say that?” 

                                                 
14 Art Laffer, “Get Ready for Inflation and Higher Interest Rates,” June 11, 2009, Wall Street Journal 
15 “But if current prices are not downwardly flexible, and the public expects price stability in the long run, the economy 

cannot get the expected inflation it needs; and in that situation the economy finds itself in a slump against which short-

run monetary expansion, no matter how large, is ineffective.” From Paul Krugman, "It's baack: Japan's Slump and the 

Return of the Liquidity Trap," 1998, Brookings Papers on Economic Activity, 2 
16 Paul Krugman, June 13, 2009, The New York Times 
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Me: “Because Donald Trump is a dangerous idiot.” 

You: “So you said. But why should I agree with you? Give me some reasons.” 

Me: “Here's a reason: Donald Trump is a dangerous idiot.” 

 

And round and round we go. Circular reasoning; begging the question. 

 

It's not always so blatant. Sometimes the premise is not identical to the conclusion, but merely 

presupposes its truth. Why should we believe that the Bible is true? Because it says so right there 

in the Bible that it's the infallible Word of God. This premise is not the same as the conclusion, 

but it can only support the conclusion if we take the Bible's word for its own truthfulness, i.e., if 

we assume that the Bible is true. But that was the very claim we were trying to prove! 

 

Sometimes the premise is just a re-wording of the conclusion. Consider this argument: “To allow 

every man unbounded freedom of speech must always be, on the whole, advantageous to the state; 

for it is highly conducive to the interests of the community that each individual should enjoy a 

liberty, perfectly unlimited, of expressing his sentiments.”17 Replacing synonyms with synonyms, 

this comes down to “Free speech is good for society because free speech is good for society.” Not 

a good argument.18 

 

Loaded Questions 

 

Loaded questions are questions the very asking of which presumes the truth of some claim. Asking 

these can be an effective debating technique, a way of sneaking a controversial claim into the 

discussion without having outright asserted it. 

 

The classic example of a loaded question is, “Have you stopped beating your wife?” Notice that 

this is a yes-or-no question, and no matter which answer one gives, one admits to beating his wife: 

if the answer is ‘no’, then the person continues to beat his wife; if the answer is ‘yes’, then he 

admits to beating his wife in the past. Either way, he’s a wife-beater. The question itself presumes 

the truth of this claim; that’s what makes it “loaded”. 

 

Strategic deployment of loaded yes-or-no questions can be an extremely effective debating 

technique. If you catch your opponent off-guard, they will struggle to respond to your question, 

since a simple ‘yes’ or ‘no’ commits them to the truth of the illicit presumption, which they want 

to deny. This makes them look evasive, shifty. And as they struggle to come up with a response, 

you can pounce on them: “It’s a simple question. Yes or no? Why won’t you answer the question?” 

It’s a great way to appear to be winning a debate, even if you don’t have a good argument. Imagine 

the following dialogue: 

 

Liberal TV Host: “Are you or are you not in favor of the president’s plan to force wealthy 

business owners to pay their fair share in taxes to protect the vulnerable and aid this nation’s 

underprivileged?” 

 

                                                 
17 This is a classic example, from Richard Whately’s 1826 Elements of Logic. 
18 Though it’s valid! P, therefore P is a valid form: if the premise is true, the conclusion must be; they’re the same. 



50 Fundamental Methods of Logic 

 

 

Conservative Guest: “Well, I don’t agree with the way you’ve laid out the question. As a 

matter of fact…” 

 

Host: “It’s a simple question. Should business owners pay their fair share; yes or no?” 

 

Guest: “You’re implying that the president’s plan would correct some injustice. But 

corporate taxes are already very…” 

 

Host: “Stop avoiding the question! It’s a simple yes or no!” 

 

Combine this with the sort of subconscious appeal to force discussed above—yelling, finger-

pointing, etc.—and the host might come off looking like the winner of the debate, with his 

opponent appearing evasive, uncooperative, and inarticulate. 

 

Another use for loaded questions is the particularly sneaky political practice of “push polling”. In 

a normal opinion poll, you call people up to try to discover what their views are about the issues. 

In a push poll, you call people up pretending to be conducting a normal opinion poll, pretending 

only to be interested in discovering their views, but with a different intention entirely: you don’t 

want to know what their views are; you want to shape their views, to convince them of something. 

And you use loaded questions to do it. 

 

A famous example of this occurred during the Republican presidential primary in 2000. George 

W. Bush was the front-runner, but was facing a surprisingly strong challenge from the upstart John 

McCain. After McCain won the New Hampshire primary, he had a lot of momentum. The next 

state to vote was South Carolina; it was very important for the Bush campaign to defeat McCain 

there and reclaim the momentum. So they conducted a push poll designed to spread negative 

feelings about McCain—by implanting false beliefs among the voting public. “Pollsters” called 

voters and asked, “Would you be more or less likely to vote for John McCain for president if you 

knew he had fathered an illegitimate black child?” The aim, of course, is for voters to come to 

believe that McCain fathered an illegitimate black child.19 But he did no such thing. He and his 

wife adopted a daughter, Bridget, from Bangladesh. 

 

A final note on loaded questions: there’s a minimal sense in which every question is loaded. The 

social practice of asking questions is governed by implicit norms. One of these is that it’s only 

appropriate to ask a question when there’s some doubt about the answer. So every question carries 

with it the presumption that this norm is being adhered to, that it’s a reasonable question to ask, 

that the answer is not certain. One can exploit this fact, again to plant beliefs in listeners’ minds 

that they otherwise wouldn’t hold. In a particularly shameful bit of alarmist journalism, the cover 

of the July 1, 2016 issue of Newsweek asks the question, “Can ISIS Take Down Washington?” The 

cover is an alarming, eye-catching shade of yellow, and shows four missiles converging on the 

Capitol dome. The simple answer to the question, though, is ‘no, of course not’. There is no 

evidence that ISIS has the capacity to destroy the nation’s capital. But the very asking of the 

question presumes that it’s a reasonable thing to wonder about, that there might be a reason to 

think that the answer is ‘yes’. The goal is to scare readers (and sell magazines) by getting them to 

believe there might be such a threat. 

                                                 
19 Let’s face it, South Carolina has more racists than the average state. That’s just a demographic fact. 
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False Choice 

 

This fallacy occurs when someone tries to convince you of something by presenting it as one of 

limited number of options and the best choice among those options. The illicit presumption is that 

the options are limited in the way presented; in fact, there are additional options that are not 

offered. The choice you’re asked to make is a false choice, since not all the possibilities have been 

presented. 

 

Most frequently, the number of options offered is two. In this case, you’re being presented with a 

false dilemma. I manipulate my kids with false choices all the time. My younger daughter, for 

example, loves cucumbers; they’re her favorite vegetable by far. We have a rule at dinner: you’ve 

got to choose a vegetable to eat. Given her ’druthers, she’d choose cucumber every night. Carrots 

are pretty good, too; they’re the second choice. But I need her to have some more variety, so I’ll 

sometimes lie and tell her we’re out of cucumbers and carrots, and that we only have two options: 

broccoli or green beans, for example. That’s a false choice; I’ve deliberately left out other options. 

I give her the false choice as a way of manipulating her into choosing green beans, because I know 

she dislikes broccoli. 

 

Politicians often treat us like children, presenting their preferred policies as the only acceptable 

choice among an artificially restricted set of options. We might be told, for example, that we need 

to raise the retirement age or cut Social Security benefits across the board; the budget can’t keep 

up with the rising number of retirees. Well, nobody wants to cut benefits, so we have to raise the 

retirement age. Bummer. But it’s a false choice. There are any number of alternative options for 

funding an increasing number of retirees: tax increases, re-allocation of other funds, means-testing 

for benefits, etc.  

 

Liberals are often ambivalent about free trade agreements. On the one hand,  access to American 

markets can help raise the living standards of people from poor countries around the world; on the 

other hand, such agreements can lead to fewer jobs for American workers in certain sectors of the 

economy (e.g., manufacturing). So what to do? Support such agreements or not? Seems like an 

impossible choice: harm the global poor or harm American workers. But it may be a false choice, 

as this economist argues: 

 

But trade rules that are more sensitive to social and equity concerns in the advanced 

countries are not inherently in conflict with economic growth in poor countries. 

Globalization’s cheerleaders do considerable damage to their cause by framing the issue as 

a stark choice between existing trade arrangements and the persistence of global poverty. 

And progressives needlessly force themselves into an undesirable tradeoff. 

… Progressives should not buy into a false and counter-productive narrative that sets the 

interests of the global poor against the interests of rich countries’ lower and middle classes. 

With sufficient institutional imagination, the global trade regime can be reformed to the 

benefit of both.20 

 

                                                 
20 Dani Rodrik, “A Progressive Logic of Trade,” Project Syndicate, 4/13/2016 
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When you think about it, almost every election in America is a False Choice. With the dominance 

of the two major political parties, we’re normally presented with a stark, sometimes unpalatable, 

choice between only two options: the Democrat or the Republican. But of course if enough people 

decided to vote for a third-party candidate, that person could win. Such candidates do exist. But 

it’s perceived as wasting a vote when you choose someone like that. This fact was memorably 

highlighted on The Simpsons back in the fall of 1996, before the presidential election between Bill 

Clinton and Bob Dole. In the episode, the diabolical, scheming aliens Kang and Kodos (the green 

guys with the tentacles and giant heads who drool constantly) contrive to abduct the two major-

party candidates and perform a “bio-duplication” procedure that allows Kang and Kodos to appear 

as Dole and Clinton, respectively. The disguised aliens hit the campaign trail and give speeches, 

making bizarre campaign promises.21 When Homer reveals the subterfuge to a horrified crowd, 

Kodos taunts the voters: “It’s true; we are aliens. But what are you going to do about it? It’s a two-

party system. You have to vote for one of us.” When a guy in the crowd declares his intention to 

vote for a third-party candidate, Kang responds, “Go ahead, throw your vote away!” Then Kang 

and Kodos laugh maniacally. Later, as Marge and Homer—chained together and wearing neck-

collars—are being whipped by an alien slave-driver, Marge complains and Homer quips, “Don’t 

blame me; I voted for Kodos.” 

 

Composition 

 

The fallacy of Composition rests on an illicit presumption about the relationship between a whole 

thing and the parts that make it up. This is an intuitive distinction, between whole and parts: for 

example, a person can be considered as a whole individual thing; it is made up of lots of parts—

hands, feet, brain, lungs, etc., etc. We commit the fallacy of Composition when we mistakenly 

assume that any property that all of the parts share is also a property of the whole. Schematically, 

it looks like this: 

 

All of the parts of X have property P. 

Any property shared by all of the parts of a thing is also a property of the whole. 

/ X has the property P. 

 

The second premise is the illicit presumption that makes this argument go through. It is illicit 

because it is simply false: sometimes all the parts of something have a property in common, but 

the whole does not have that property. 

 

Consider the 1980 U.S. Men’s Hockey Team. They won the gold medal at the Olympics that year, 

beating the unstoppable-seeming Russian team in the semifinals. (That game is often referred to 

as “The Miracle on Ice” after announcer Al Michaels’ memorable call as the seconds ticked off at 

the end: “Do you believe in miracles? Yes!”) Famously, the U.S. team that year was a rag-tag 

collection of no-name college guys; the average age on the team was 21, making them the youngest 

team ever to compete for the U.S. in the Olympics. The Russian team, on the other hand, was 

packed with seasoned hockey veterans with world-class talent. 

 

                                                 
21 Kodos: “I am Clin-ton. As overlord, all will kneel trembling before me and obey my brutal command. End 

communication.”  
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In this example, the team is the whole, and the individual players on the team are the parts. It’s 

safe to say that one of the properties that all of the parts shared was mediocrity—at least, by the 

standards of international competition at the time. They were all good hockey players, of course—

Division I college athletes—but compared to the Hall of Famers the Russians had, they were 

mediocre at best. So, all of the parts have the property of being mediocre. But it would be a mistake 

to conclude that the whole made up of those parts—the 1980 U.S. Men’s Hockey Team—also had 

that property. The team was not mediocre; they defeated the Russians and won the gold medal! 

They were a classic example of the whole being greater than the sum of its parts. 

 

Division 

 

The fallacy of Division is the exact reverse of the fallacy of Composition. It’s an inference from 

the fact that a whole has some property to a conclusion that a part of that whole has the same 

property, based on the illicit presumption that wholes and parts must have the same properties. 

Schematically: 

 

 

X has the property P. 

Any property of a whole thing is shared by all of its parts. 

/ x, which is a part of X, has property P. 

 

The second premise is the illicit presumption. It is false, because sometimes parts of things don’t 

have the same properties as the whole. George Clooney is handsome; does it follow that his large 

intestine is also handsome? Of course not. Toy Story 3 is a funny movie. Remember when Mr. 

Potato Head had to use a tortilla for his body? Or when Buzz gets flipped into Spanish mode and 

does the flamenco dance with Jessie? Hilarious. But not all of the parts of the movie are funny. 

When it looks like all the toys are about to be incinerated at the dump? When Andy finally drives 

off to college? Not funny at all!22 

 

 

V.  Fallacies of Linguistic Emphasis 

 

Natural languages like English are unruly things. They’re full of ambiguity, shades of meaning, 

vague expressions; they grow and develop and change over time, often in unpredictable ways, at 

the capricious collective whim of the people using them. Languages are messy, complicated. This 

state of affairs can be taken advantage of by the clever debater, exploiting the vagaries of language 

to make convincing arguments that are nevertheless fallacious. This exploitation involves the 

manipulation of linguistic forms to emphasize facts, claims, emotions, etc. that favor one’s 

position, and to de-emphasize those that do not. We will survey four techniques that fall under this 

heading. 

 

 

 

 

                                                 
22 I admit it: I teared up a bit; I’m not ashamed. 
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Accent 
 

This is one of the original 13 fallacies that Aristotle recognized in his Sophistical Refutations. Our 

usage, however, will depart from Aristotle’s. He identifies a potential for ambiguity and 

misunderstanding that is peculiar to his language—ancient Greek. That language—in written 

form—used diacritical marks along with the alphabet, and transposition of these could lead to 

changes in meaning. English is not like this, but we can identify a fallacy that is roughly in line 

with the spirit of Aristotle’s accent: it is possible, in both written and spoken English (along with 

every other language), to convey different meanings by stressing individual words and phrases. 

The devious use of stress to emphasize contents that are helpful to one’s rhetorical goals, and to 

suppress or obscure those that are not—that is the fallacy of accent. 

 

There are a number of techniques one can use with the written word that fall in the category of 

accent. Perhaps the simplest way to emphasize favorable contents, and de-emphasize unfavorable 

ones, is to vary the size of one’s text. We see this in advertising all the time. You drive past a store 

that’s having a sale, which they advertise with a sign in the window. In the largest, most eye-

catching font, you read, “70% OFF!” “Wow,” you might think, “that’s a really steep discount. I 

should go in to the store and get a great deal.” At least, that’s what the store wants you to think. 

They’re emphasizing the fact of (at least one) steep discount. If you look more closely at the sign, 

however, you’ll see the things that they’re legally required to say, but that they’d like to de-

emphasize. There’s a tiny ‘Up to’ in front of the gigantic ‘70% OFF!’. For all you know, there’s 

one crappy item that nobody wants, tucked in the back of the store, that’s discounted at 70%; 

everything else has much smaller discounts, or none at all. Also, if you squint really hard, you’ll 

see an asterisk after the ‘70% OFF!’, which leads to some text at the bottom of the poster, in the 

tiniest font possible, that reads, “While supplies last. See store details. Not available in all 

locations. Offer not valid weekends or holidays. All sales are final.” This is the proverbial “fine 

print”. It makes the sale look a lot less exciting. So they hide it. 

 

Footnotes are generally a good place to hide unfavorable content. We all know that CEOs of big 

companies—especially banks—get paid ridiculous sums of money. Some of it is just their salary 

and stock options; those amounts are huge enough to turn most people off. But there are other 

perks that are so over-the-top, companies and executives feel like it’s best to hide them from the 

public (and their shareholders) in the footnotes of CEO contracts and SEC reports. Michelle Leder 

runs a website called footnoted.com, which is dedicated to combing through these documents and 

exposing outrageous compensation packages. She’s uncovered executives spending over $700,000 

to renovate their offices, demanding helicopters in addition to their corporate jets, receiving 

millions of dollars’ worth of private security services, etc., etc. These additional, extravagant forms 

of compensation seem excessive to most people, so companies do all they can to hide them from 

the public. 

 

Another abuse of footnotes can occur in academic or legal writing. Legal briefs and opinions and 

academic papers seek to persuade. If you’re writing such a document, and you relegate a strong 

objection to your conclusion to a brief mention in the footnotes23, you’re de-emphasizing that point 

of view and making it less likely that the reader will reject your arguments. That’s a fallacious 

                                                 
23 Or worse, the endnotes: people have to flip all the way to the back to see those. 
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suppression of opposing content, a sneaky trick to try to convince people you’re right without 

giving them a forthright presentation of the merits (and demerits) of your position. 

 

The fallacy of accent can occur in speech as well as writing. The audible correlate of “fine print” 

is that guy talking really fast at the end of the commercial, rattling off all the unpleasant side effects 

and legal disclaimers that, if given a full, deliberate presentation might make you less likely to buy 

the product they’re selling. The reason, by the way, that we know about such horrors as the 

possibility of driving while not awake (a side-effect of some sleep aids) and a four-hour erection 

(side-effect of erectile-dysfunction drugs), is that drug companies are required, by federal law, not 

to commit the fallacy of accent if they want to market drugs directly to consumers. They have to 

read what’s called a “major statement” that lists all of these side-effects explicitly, and no fair 

cramming them in at the end and talking over them really fast. 

 

When we speak, how we stress individual words and phrases can alter the meaning that we convey 

with our utterances. Consider the sentence ‘These pretzels are making me thirsty.’ Now consider 

various utterances of that sentence, each stressing a different word; different meanings will be 

conveyed: 

 

These pretzels are making me thirsty.  [Not those over there, these right here.] 

These pretzels are making me thirsty. [It’s not the chips, it’s the pretzels.] 

These pretzels are making me thirsty. [Don’t try to tell me they’re not; they are.] 

 

And so on. We can capture the various stresses typographically by using italics (or boldface or all-

caps), but if we leave that out, we lose some of the meaning conveyed by the actual, stressed 

utterance. One can commit the fallacy of accent by transcribing someone’s speech in a way that 

omits stress-indicators, and thereby obscures or alters the meaning that the person actually 

conveyed. Suppose a candidate for president says, “I hope this country never has to wage war with 

Iran.” The stress on ‘hope’ clearly conveys that the speaker doubts that his hopes will be realized; 

the candidate has expressed a suspicion that there may be war with Iran. This speech might set off 

a scandal: saying such a thing during an election could negatively affect the campaign, with the 

candidate being perceived as a war-monger; it could upset international relations. The campaign 

might try to limit the damage by writing an op-ed in a major newspaper, and transcribing the 

candidate’s utterance without any indication of stress: “The Senator said, ‘I hope this country never 

has to wage war with Iran.’ This is a sentiment shared by most voters, and even our opponent.” 

This transcription, of course, obscures the meaning of the original utterance. Without the stress, 

there is not additional implication that the candidate suspects that there will in fact be a war. 

 

Quoting out of Context 

 

Another way to obscure or alter the meaning of what someone actually said is to quote them 

selectively. Remarks taken out of their proper context might convey a different meaning than they 

did within that context.  

 

Consider a simple example: movie ads. These often feature quotes from film critics, which are 

intended to convey the impression that the movie was well-liked by them. “Critics call the film 

‘unrelenting’, ‘amazing’, and ‘a one-of-a-kind movie experience’”, the ad might say. That sounds 
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like pretty high praise. I think I’d like to see that movie. That is, until I read the actual review from 

which those quotes were pulled: 

 

I thought I’d seen it all at the movies, but even this jaded reviewer has to admit that this 

film is something new, a one-of-a-kind movie experience: two straight hours of 

unrelenting, snooze-inducing mediocrity. I find it amazing that not one single aspect of this 

movie achieves even the level of “eh, I guess that was OK.”  

 

The words ‘unrelenting’ and ‘amazing’—and the phrase ‘a one-of-a-kind movie experience’—do 

in fact appear in that review. But situated in their original context, they’re doing something 

completely different than the movie ad would like us to believe.  

 

Politicians often quote each other out of context to make their opponents look bad. In the 2012 

presidential campaign, both sides did it rather memorably. The Romney campaign was trying to 

paint President Obama as anti-business. In a campaign speech, Obama once said the following:  

 

If you’ve been successful, you didn’t get there on your own. You didn’t get there on your 

own. I’m always struck by people who think, well, it must be because I was just so smart. 

There are a lot of smart people out there. It must be because I worked harder than everybody 

else. Let me tell you something: there are a whole bunch of hardworking people out there. 

If you’ve got a business, you didn’t build that. Somebody else made that happen.  

 

Yikes! What an insult to all the hard-working small-business owners out there. They didn’t build 

their own businesses? The Romney campaign made some effective ads, with these remarks playing 

in the background, and small-business people describing how they struggled to get their firms 

going. The problem is, that quote above leaves some bits out—specifically, a few sentences before 

the last two. Here’s the full transcript: 

 

If you’ve been successful, you didn’t get there on your own. You didn’t get there on your 

own. I’m always struck by people who think, well, it must be because I was just so smart. 

There are a lot of smart people out there. It must be because I worked harder than everybody 

else. Let me tell you something: there are a whole bunch of hardworking people out there.  

 

If you were successful, somebody along the line gave you some help. There was a great 

teacher somewhere in your life. Somebody helped to create this unbelievable American 

system that we have that allowed you to thrive. Somebody invested in roads and bridges. 

If you’ve got a business, you didn’t build that. Somebody else made that happen. 

 

Oh. He’s not telling business owners that they didn’t build their own businesses. The word ‘that’ 

in “you didn’t build that” doesn’t refer to the businesses; it refers to the roads and bridges—the 

“unbelievable American system” that makes it possible for businesses to thrive. He’s making a 

case for infrastructure and education investment; he’s not demonizing small-business owners. 

 

The Obama campaign pulled a similar trick on Romney. They were trying to portray Romney as 

an out-of-touch billionaire, someone who doesn’t know what it’s like to struggle, and someone 

who made his fortune by buying up companies and firing their employees. During one speech, 
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Romney said: “I like being able to fire people who provide services to me.” Yikes! What a creep. 

This guy gets off on firing people? What, he just finds joy in making people suffer? Sounds like a 

moral monster. Until you see the whole speech: 

 

I want individuals to have their own insurance. That means the insurance company will 

have an incentive to keep you healthy. It also means if you don’t like what they do, you 

can fire them. I like being able to fire people who provide services to me. You know, if 

someone doesn’t give me the good service that I need, I want to say I’m going to go get 

someone else to provide that service to me. 

 

He’s making a case for a particular health insurance policy: self-ownership rather than employer-

provided health insurance. The idea seems to be that under such a system, service will improve 

since people will be empowered to switch companies when they’re dissatisfied—kind of like with 

cell phones, for example. When he says he likes being able to fire people, he’s talking about being 

a savvy consumer. I guess he’s not a moral monster after all. 

 

Equivocation 

 

Typical of natural languages is the phenomenon of homonymy24: when words have the same 

spelling and pronunciation, but different meanings—like ‘bat’ (referring to the nocturnal flying 

mammal) and ‘bat’ (referring to the thing you hit a baseball with). This kind of natural-language 

messiness allows for potential fallacious exploitation: a sneaky debater can manipulate the 

subtleties of meaning to convince people of things that aren’t true—or at least not justified based 

on what they say. We call this kind of maneuver the fallacy of equivocation 

 

Here’s an example. Consider a banker; let’s call him Fred. Fred is the president of a bank, a real 

big-shot. He’s married, but he’s not faithful: he’s carrying on an affair with one of the tellers at his 

bank, Linda. Fred and Linda have a favorite activity: they take long lunches away from their 

workplace, having romantic picnics at a beautiful spot they found a short walk away. They lay out 

their blanket underneath an old, magnificent oak tree, which is situated right next to a river, and 

enjoy champagne and strawberries while canoodling and watching the boats float by.  

 

One day—let’s say it’s the anniversary of when they started their affair—Fred and Linda decide 

to celebrate by skipping out of work entirely, spending the whole day at their favorite picnic spot. 

(Remember, Fred’s the boss, so he can get away with this.) When Fred arrives home that night, 

his wife is waiting for him. She suspects that something is up: “What are you hiding, Fred? Are 

you having an affair? I called your office twice, and your secretary said you were ‘unavailable’ 

both times. Tell me this: Did you even go to work today?” Fred replies, “Scout’s honor, dear. I 

swear I spent all day at the bank today.” 

 

See what he did there? ‘Bank’ can refer either to a financial institution or the side of a river—a 

river bank. Fred and Linda’s favorite picnic spot is on a river bank, and Fred did indeed spend the 

whole day at that bank. He’s trying to convince his wife he hasn’t been cheating on her, and he 

exploits this little quirk of language to do so. That’s equivocation. 

                                                 
24 Greek word, meaning ‘same name’. 
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A similar linguistic phenomenon can also be exploited to equivocate: polysemy.25 This is distinct 

from, but similar to, homonymy. The meanings of homonyms are typically unrelated. In polysemy, 

the same word or phrase has multiple, related meanings—different senses. Consider the word 

‘law’. The meaning that comes immediately to mind is the statutory one: “A rule of conduct 

imposed by authority.”26 The state law prohibiting murder is an instance of a law in this sense. 

There is another sense of ‘law’, however; this is the sense operative when we speak of scientific 

laws. These are regularities in nature—Newton’s law of universal gravitation, for example. These 

meanings are similar, but distinct: statutes, human laws, are prescriptive; scientific laws are 

descriptive. Human laws tell us how we ought to behave; scientific laws describe how things 

actually do, and must, behave. Human laws can be violated: I could murder someone. Scientific 

laws cannot be violated: if two bodies have mass, they will be attracted to one another by a force 

directly proportional to the product of their masses and inversely proportional to the square of the 

distance between them; there’s no getting around it. 

 

A common argument for the existence of God relies on equivocation between these two senses of 

‘law’: 

 

There are laws of nature. 

By definition, laws are rules imposed by an Authority. 

So the laws of nature were imposed by an Authority. 

The only Authority who could impose such laws is an all-powerful Creator—God. 

/ God exists. 

 

This argument relies on fallaciously equivocating between the two senses of ‘law’—human and 

natural. It’s true that human laws are by definition imposed by an authority; but that is not true of 

natural laws. Additional argument is needed to establish that those must be so imposed.  

 

A famous instance of equivocation of this sort occurred in 1998, when President Bill Clinton 

denied having an affair with White House intern Monica Lewinsky by declaring forcefully in a 

press conference: “I did not have sexual relations with that woman—Ms. Lewinsky.” The president 

wanted to convince his audience that nothing sexually inappropriate had happened, even though, 

as was revealed later, lots of icky sex stuff had been going on. He does this by taking advantage 

of the polysemy of the phrase ‘sexual relations’. In the broadest sense, the phrase connotes sexual 

activity of any kind—including oral sex (which Bill and Monica engaged in). This is the sense the 

president wants his audience to have in mind, so that they’re convinced by his denial that nothing 

untoward happened. But a more restrictive sense of ‘sexual relations’—a bit more old-fashioned 

and Southern usage—refers specifically to intercourse (which Bill and Monica did not engage in). 

It’s this sense that the president can fall back on if anyone accuses him of having lied; he can claim 

that, strictly speaking, he was telling the truth: he and Monica didn’t have ‘relations’ in the 

intercourse sense. Clinton later admitted to “misleading” the American people—but, importantly, 

not to lying. 

 

                                                 
25 Greek word, meaning ‘many signs (or meanings)’. 
26 From the Oxford English Dictionary. 
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The distinction between lying and misleading is a hard one to draw precisely, but roughly speaking 

it’s the difference between trying to get someone to believe something false by saying something 

false (lying) and trying to get them to believe something false by saying something true but 

deceptive (misleading). Besides homonymy and polysemy, yet another common linguistic 

phenomenon can be exploited to this end. This phenomenon is implicature, identified and named 

by the philosopher Paul Grice in the 1960s.27 Implicatures are contents that we communicate over 

and above the literal meaning of what we say—aspects of what we mean by our utterances that 

aren’t stated explicitly. People listening to us infer these additional meanings based on the 

assumption that the speaker is being cooperative, observing some unwritten rules of conversational 

practice. To use one of Grice’s examples, suppose your car has run out of gas on the side of the 

road, and you stop me as I walk by, explaining your plight, and I say, “There’s a gas station right 

around the corner.” Part of what I communicate by my utterance is that the station is open and 

selling gas right now—that you can go there and solve your problem. You can infer this content 

based on the assumption that I’m being a cooperative conversational partner; if the station is closed 

or out of gas—and I knew it—then I would be acting unhelpfully, uncooperatively. Notice, though, 

that this content is not part of what I literally said: all I told you is that there is a gas station around 

the corner, which would still be true even if it were closed and/or out of gas.  

 

Implicatures are yet another subtle aspect of meaning in natural language that can be exploited. So 

a final technique that we might classify under the fallacy of equivocation is false implication—

saying things that are strictly speaking true, but which communicate false implicatures. Grocery 

stores do this all the time. You know those signs posted under, say, cans of soup that say “10 for 

$10”? That’s the store’s way of telling us that soup’s on sale for a buck a can; that’s right, you 

don’t need to buy 10 cans to get the deal; if you buy one can, it’s $1; 2 cans are $2, and so on. So 

why not post a sign saying “$1 per can”? Because the 10-for-$10 sign conveys the false implicature 

that you need to buy 10 cans in order to get the sale price. The store’s trying to drive up sales. 

 

A striking example of false implicature is featured in one of the most prominent U.S. Supreme 

Court rulings on perjury law. In the original criminal case, a defendant by the name of Bronston 

had the following exchange with the prosecuting attorney: “Q. Do you have any bank accounts in 

Swiss Banks, Mr. Bronston? A. No, sir. Q. Have you ever? A. The company had an account there 

for about six months, in Zurich.”28 As it turns out, Bronston did not have any Swiss bank accounts 

at the time of the questioning, so his first answer was strictly true. But he did have Swiss bank 

accounts in the past. However, his second answer does not deny this. All he says is that his 

company had Swiss bank accounts—an answer that implicates that he himself did not. Based on 

this exchange, Bronston was convicted of perjury, but the Supreme Court overturned that 

conviction, pointing out that Bronston had not made any false statements (a requirement of the 

perjury statute); the falsehood he conveyed was an implicature.29 

 

Manipulative Framing 

 

Words are powerful. They can trigger emotional responses and activate associations with related 

ideas, altering the way we perceive the world and conceptualize issues. The language we use to 

                                                 
27 See his Studies in the Way of Words, 1989, Cambridge: Harvard University Press. 
28 Bronston v. United States, 409 US 352 - Supreme Court 1973   
29 The court didn’t use the term ‘implicature’ in its ruling, but this was the thrust of their argument. 



60 Fundamental Methods of Logic 

 

 

describe a particular policy, for example, can affect how favorably our listeners are likely to view 

that proposal. How we frame issues with language can profoundly influence how persuasive our 

arguments about those issues will be. The technique of choosing words to frame issues 

intentionally to manipulate your audience is what we will call the fallacy of manipulative framing. 

 

The importance of framing in politics has long been recognized, but only in recent decades has it 

been raised to an art form. One prominent practitioner of the art is Republican consultant Frank 

Luntz. In a 200-plus page memo he sent to Congressional Republicans in 1997, and later in a 

book30, Luntz stressed the importance of choosing persuasive language to frame issues so that 

voters would be more likely to support Republican positions on issues. One of his 

recommendations illustrates manipulative framing nicely. In the United States, if you leave a 

fortune to your heirs after you die, then the government taxes it (provided it’s greater than about 

$5.5 million, or $11 million for a couple, as of 2016). The usual name for this tax is the ‘estate 

tax’. Luntz encouraged Republicans—who are generally opposed to this tax—to start referring to 

it instead as the “death tax”. This framing is likelier to cause voters to oppose the tax as well: 

taxing people for dying? Talk about kicking a man when he’s down! (Polling bears this out: people 

oppose the tax in higher numbers when it’s called the ‘death tax’ than when it’s called the ‘estate 

tax’.) 

 

The linguist George Lakoff has written extensively on the subject of framing.31 His remarks on the 

subject of “tax relief” nicely illustrate how framing works: 

 

On the day that George W. Bush took office, the words tax relief started appearing in White 

House communiqués to the press and in official speeches and reports by conservatives. Let 

us look in detail at the framing evoked by this term. 

 

The word relief evokes a frame in which there is a blameless Afflicted Person who we 

identify with and who has some Affliction, some pain or harm that is imposed by some 

external Cause-of-pain. Relief is the taking away of the pain or harm, and it is brought 

about by some Reliever-of-pain.  

 

The Relief frame is an instance of a more general Rescue scenario, in which there a Hero 

(The Reliever-of-pain), a Victim (the Afflicted), a Crime (the Affliction), A Villain (the 

Cause-of-affliction), and a Rescue (the Pain Relief). The Hero is inherently good, the 

Villain is evil, and the Victim after the Rescue owes gratitude to the Hero. 

 

The term tax relief evokes all of this and more. Taxes, in this phrase, are the Affliction (the 

Crime), proponents of taxes are the Causes-of Affliction (the Villains), the taxpayer is the 

Afflicted Victim, and the proponents of “tax relief” are the Heroes who deserve the 

taxpayers’ gratitude. 

 

Every time the phrase tax relief is used and heard or read by millions of people, the more 

this view of taxation as an affliction and conservatives as heroes gets reinforced.32 

                                                 
30 Frank Luntz, 2007, Words That Work: It’s Not What You Say, It’s What People Hear. New York: Hyperion. 
31 See, e.g., his 2004 book, Don’t Think of an Elephant!, White River Junction, Vermont: Chelsea Green Publishing. 
32 George Lakoff, 2/14/2006, “Simple Framing,” Rockridge Institute. 
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Carefully chosen words can trigger all sorts of mental associations, mostly at the subconscious 

level, that affect how people perceive the issues and have the power to change opinions. That’s 

why manipulative framing is ubiquitous in public discourse. 

 

Consider debates about illegal immigration. Those who are generally opposed to policies that favor 

such people will often refer to them as “illegal immigrants”. This framing emphasizes the fact that 

they are in this country illegally, making it likelier that the listener will also oppose policies that 

favor them. A further modification can further increase this likelihood: “illegal aliens.” The word 

‘alien’ has a subtle dehumanizing effect; if we don’t think of them as individual people with hopes 

and dreams, we’re not likely to care much about them. Even more dehumanizing is a framing one 

often sees these days: referring to illegal immigrants simply as “illegals”. They are the living 

embodiment of illegality! Those who advocate on behalf of such people, of course, use different 

terminology to refer to them: “undocumented workers”, for example. This framing de-emphasizes 

the fact that they’re here illegally; they’re merely “undocumented”. They lack certain pieces of 

paper; what’s the big deal? It also emphasizes the fact that they are working, which is likely to 

cause listeners to think of them more favorably. 

 

The use of manipulative framing in the political sphere extends to the very names that politicians 

give the laws they pass. Consider the healthcare reform act passed in 2010. Its official name is The 

Patient Protection and Affordable Care Act. Protection of patients, affordability, care—these all 

trigger positive associations. The idea is that every time someone talks about the law prior to and 

after its passage, they will use the name with this positive framing and people will be more likely 

to support it. As you may know, this law is commonly referred to with a different moniker: 

‘Obamacare’. This is the framing of choice for the law’s opponents: any negative associations 

people have with President Obama are attached to the law; and any negative feelings they have 

about healthcare reform get attached to Obama. Late night talk show host Jimmy Kimmel 

demonstrated the effectiveness of framing on his show one night in 2013. He sent a crew outside 

his studio to interview people on the street and ask them which approach to health reform they 

preferred, the Affordable Care Act or Obamacare. Overwhelmingly, people expressed a preference 

for the Affordable Care Act over Obamacare, even though those are just two different ways of 

referring to the same piece of legislation. Framing is especially important when the public is 

ignorant of the actual content of policy proposals, which is all too often the case. 

 

 

EXERCISES 

 

Identify the fallacy most clearly exhibited in the following passages. 

 

1.  Responding to a critical comment from one Mike Helgeson, the anonymous proprietor of the 

“Governor Scott Walker Sucks” Facebook page wrote this: 

“Mike Helgeson is a typical right wing idiot who assumes anyone who doesn't like Walker doesn't 

work and is living off the government. I work 60-70 hours a week during the summer so get a clue 

and quit whining like a child.” 
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2.  Randy: “I think abortion should be illegal. Unborn children have a right not to be killed.” 

Sally: “What do you know about it? You’re a man.” 

 

 

3.  We need a balanced budget amendment, forcing the U.S. government to balance its budget 

every year. All of the states have to balance their budgets; so should the country. 

 

 

4.  Privacy is important to the development of full individuals because there has to be an interior 

zone within each person that other people don’t see.33 

 

 

5.  Of course, the real gripe the left has in Wisconsin is that the current legislative districts were 

drawn by Republicans, who were granted that right due to their large victories in 2010. Since the 

new maps were unveiled in 2011, Democrats have issued several legal challenges trying to argue 

the maps are “unfair” and that Republicans overstepped their bounds. 

Did Republicans draw the maps to their advantage? Of course they did — just as Democrats would 

have done had they held control of state government in 2010.34  

 

6.  President Obama has been terrible for healthcare costs in this county. When we had our first 

child, before he was president, we only paid a couple of hundred dollars out of pocket; insurance 

covered the rest. The new baby we just had? The hospital bills cost us over $5,000! 

 

 

7.  Let's call our public schools what they really are—‘government’ schools.35 

 

 

8.  Our Convention occurs at a moment of crisis for our nation. The attacks on our police, and the 

terrorism in our cities, threaten our very way of life. Any politician who does not grasp this danger 

is not fit to lead our country.  

 

Americans watching this address tonight have seen the recent images of violence in our streets and 

the chaos in our communities.  

 

Many have witnessed this violence personally, some have even been its victims.  

 

I have a message for all of you: the crime and violence that today afflicts our nation will soon 

come to an end. Beginning on January 20th 2017, safety will be restored.36 

 

 

                                                 
33 David Brooks, 4/14/15, New York Times 
34 Christian Schneider, 7/14/16, Milwaukee Journal-Sentinel 
35 John Stossel, 10/2/13, foxnews.com 
36 Donald J. Trump, accepting the Republican Party’s nomination for president, 7/21/16 
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9.  You shouldn’t hire that guy. The last company he worked for went bankrupt. He’s probably a 

failure, too. 

 

 

10. Fred: “I read about a new study that shows diet soda is good for weight loss—better than water, 

even.” 

 

Fiona: “Yeah, but look at who sponsored it: the International Life Sciences Institute, which is a 

non-profit, but whose board of directors is stacked with people from Coca-Cola and PepsiCo.”  

 

 

11. Former Trump campaign manager Corey Lewandowski on CNN panel show, 8/2/16, regarding 

President Obama: 

 

“You raised the issue. I’m just asking. …Did he, did he ever release his transcripts or his admission 

to Harvard University? …And the question was did he get in as a U.S. citizen or was he brought 

into Harvard University as a citizen who wasn’t from this country?” 

 

 

12. Buy the Amazing RonCo Super Bass-o-Matic ’76, the easiest way to prepare delicious bass: 

only 3 installments of $19.99.* 

 

*Shipping and handling fees apply. Price is before state, local, and federal taxes. Safety goggles sold separately. The rush from using Super Bass-

o-Matic ’76 has been shown to be addictive in laboratory mice. RonCo not legally responsible for injury or choking death due to ingestion of 

insufficiently pureed bass. The following aquatic species cannot be safely prepared using the Super Bass-o-Matic: shark, cod, squid, octopus, 

catfish, dogfish, crab (snow, blue, and king), salmon, tuna, lobster, crayfish, crawfish, crawdaddy, whale (sperm, killer, and humpback). Super 
Bass-o-Matic is illegal to operate in the following jurisdictions: California, Massachusetts, Canada, the European Union, Haiti.  

 

 

13. Former pro golfer Brandel Chamblee, expressing concern about the workout habits of current 

pro Rory McIlroy: 

 

“I think of what happened to Tiger Woods. And I think more than anything of what Tiger Woods 

did early in his career with his game was just an example of how good a human being can be, what 

he did towards the middle and end of his career is an example to be wary of. That’s just my opinion. 

And it does give me a little concern when I see the extensive weightlifting that Rory is doing in 

the gym.” 

 

Former pro golfer Gary Player, famous for his rigorous workouts and long career, responding on 

McIlroy’s behalf via Twitter: 

 

“Haha, too funny. Don't worry about the naysayers mate. They all said I would be done at 30 too.” 

 

 

14. Responding to North Korean rhetoric about pre-emptive nuclear strikes if S. Korea and U.S. 

engage in war games, Russia: 



64 Fundamental Methods of Logic 

 

 

“We consider it to be absolutely impermissible to make public statements containing threats to 

deliver some ‘preventive nuclear strikes’ against opponents,” said the statement, as translated by 

the Russian TASS news agency. “Pyongyang should be aware of the fact that in this way the DPRK 

[North Korea] will become fully opposed to the international community and will create 

international legal grounds for using military force against itself in accordance with the right of a 

state to self-defense enshrined in the United Nations Charter.”37 

 

 

15. Georgia Governor Nathan Deal vetoed a controversial “religious liberty” bill, which was 

widely perceived to allow discrimination against members of the LGBT community, under 

pressure from businesses such as Disney.  

Many religious groups think this is Disney being against religious freedom. A group called Texas 

Values asks, What’s next? “Will Disney now ban you from wearing a cross outside your shirt at 

their parks?” the group asked in a statement. “Will a Catholic priest be forced to remove his white 

collar when he takes a picture with Mickey Mouse?”38 

 

 

16. Donald Trump can’t win the Republican presidential primary. In the book The Party Decides, 

a team of famous political scientists showed how party elites have a tremendous influence on the 

selection of their nominee, influencing voters to select the person they prefer. Trump is hated by 

Republican elites, so there’s no way he’ll win. 

 

 

17. Responding to criticism that the state university system was declining in quality under his 

watch due to a lack of funding, the Governor said, “Look, we can either have huge tuition 

increases, which no one wants, or university administrators and professors can learn to do more 

with less.” 

 

 

18. Responding to criticism from the Black Lives Matter movement, which claimed that officers 

in his department were disproportionately targeting minorities for stops and arrests, the Chief of 

Police said, “Look, these officers are highly trained professionals who have one of the most 

stressful jobs in the world. They bust their butts day in and day out to keep this community safe, 

working long hours in difficult circumstances. They should be celebrated as the heroes they are.” 

 

 

19. Man, I told you flossing was useless. Look at this newspaper article, “Medical benefits of 

flossing unproven”: 

 

“The two leading professional groups — the American Dental Association and the American 

Academy of Periodontology, for specialists in gum disease and implants — cited other studies as 

proof of their claims that flossing prevents buildup of gunk known as plaque, early gum 

                                                 
37 3/8/16, The Daily Caller 
38 3/31/16, “Conservative Group Claims Disney, Apple & Others ‘Declared Public War’ On Christianity,” The 

Huffington Post, huffingtonpost.com 
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inflammation called gingivitis, and tooth decay. However, most of these studies used outdated 

methods or tested few people. Some lasted only two weeks, far too brief for a cavity or dental 

disease to develop. One tested 25 people after only a single use of floss. Such research, like the 

reviewed studies, focused on warning signs like bleeding and inflammation, barely dealing with 

gum disease or cavities.”39 

 

 

20. Did you hear about Jason Pierre-Paul, the defensive end for the New York Giants? He blew 

off half his hand lighting off fireworks on the Fourth of July. Man, jocks are such idiots. 

 

 

21. Mother of recent law school grad, on the phone with her son: “Did you pass the bar?” 

 

Son: “Yes, mom.” 

 

[He failed the bar exam. But he did walk past a tavern on his way home from work.] 

 

 

22. “Hillary Clinton does indeed want to end freedom of religion. …Today’s Democrat Party is 

more interested in taking away our inalienable rights than they are in anything else, and Hillary 

Clinton has proved that fact once again.”40 

 

 

23. Alfred: “I’m telling you, Obama is a socialist. He said, and I quote, ‘I actually believe in 

redistribution.’” 

 

Betty: “C’mon. Read the whole interview: ‘I think the trick is figuring out how do we structure 

government systems that pool resources and hence facilitate some redistribution because I actually 

believe in redistribution, at least at a certain level to make sure that everybody's got a shot. How 

do we pool resources at the same time as we decentralize delivery systems in ways that both foster 

competition, can work in the marketplace, and can foster innovation at the local level and can be 

tailored to particular communities.’ Socialists don’t talk about ‘decentralization,’ ‘competition,’ 

and ‘the marketplace.’ That’s straight-up capitalism.” 

 

 

24. In 2016, Supreme Court Justice Ruth Bader Ginsburg gave an interview in which she criticized 

Republican presidential candidate Donald Trump, calling him a “faker” and saying she couldn’t 

imagine him as president. She was criticized for these remarks: as a judge, she’s supposed to be 

politically impartial, the argument went; her remarks amounted to a violation of judicial ethics. 

Defenders of Ginsburg were quick to point out that her late colleague, Justice Antonin Scalia, was 

a very outspoken conservative on a variety of political issues, and even went hunting with Vice 

President Dick Cheney one time before he was set to hear a case in which Cheney was involved. 

Isn’t that a violation of judicial ethics, too? 

 

                                                 
39 Jeff Donn, 8/2/16, “Medical benefits of dental floss unproven,” Associated Press 
40 Onan Coca, http://eaglerising.com/17782/hillary-clinton-wants-to-end-freedom-of-religion-because-abortion/ 
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25. Horace: “Man, these long lines at the airport are ridiculous. No liquids on the plane, taking off 

my shoes, full-body scans. Is all this really necessary?” 

 

Pete: “Of course it is. TSA precautions prevent terrorism. There hasn’t been a successful terrorist 

attack in America involving planes since these extra security measures went into place, has there?” 

 

 

26. Democrat: “The American Reinvestment and Recovery Act was one of the most important 

pieces of legislation passed during the last decade.” 

 

Republican: “Wrong. The Obama Stimulus was yet another failed attempt by government to 

intervene in the free market.” 

 

 

27. A married couple goes out to dinner, and they have a bit too much wine to drink. After some 

discussion, they decide nevertheless to drive home. Since the wife is the more intoxicated of the 

two, the husband takes the wheel. On the way home, he’s pulled over by the police. When asked 

whether he’s had anything to drink that night, he replies, with a nod toward his wife, “She did. 

That’s why I’m driving.”  

 

 

28. Fellow Patriots and freedom loving history buffs, 

 

I urge your bosses to vote NO on the Huffman Amendment. This amendment would strike an 

Obama Administration directive that allows Confederate flags to be flown on only 2 days a 

year: Memorial Day and Confederate Memorial Day. 

 

…You know who else supports destroying history so that they can advance their own agenda? 

ISIL. Don’t be like ISIL. I urge you to vote NO. 

 

Yours in freedom from the PC police, 

 

Pete Sanborn, Legislative Director, Congressman Lynn Westmoreland (GA-03) 

 

 

29. Robert F. Kennedy, Jr. [an attorney, radio host, son of former Attorney General and US Senator 

Robert F. Kennedy, and nephew of former President John F. Kennedy] has released an important 

book on the dangers of mercury poisoning. “Thimerosal: Let the Science Speak” is a compelling 

look at the scientific studies surrounding the debate.41 

 

 

30. I saw an article about British Prime Minister David Cameron being interviewed by that 

insufferable boor, Piers Morgan. 

 

                                                 
41 Website: Trace Amounts – Autism, Mercury, and the Hidden Truth (traceamounts.com) 
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Both groaned and moaned about Donald Trump’s plan to build a wall to stop illegal aliens and halt 

Muslim immigration to overhaul the whole immigration system. Both sat there as if “they” had the 

moral authority to tell the U.S. or any American how to act. And that isn’t true! The British have 

been kicking people in the backside for almost 400 years on six out of seven continents. They 

pillaged and plundered countries all over, including our own. We all know that we had to fight two 

wars just to get their bloody hands off of us.42 

                                                 
42 letter to the editor, 5/30/16, Courier-Post 
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Deductive logic I: Aristotelian Logic 
 

 

 

 

 

 

 

 

 

 

I.  Deductive logics 

 

In this chapter and the next we will study two deductive logics—two approaches to evaluating 

deductive arguments. The first, which is the subject of the present chapter, was developed by 

Aristotle nearly 2,500 years ago, and we’ll refer to it simply as Aristotelian Logic; the second, the 

subject of the next chapter, has roots nearly as ancient as Aristotle’s but wasn’t fully developed 

until the 19th century, and is called Sentential logic. 

 

Again, these are two different approaches to the same problem: evaluating deductive arguments, 

determining whether they are valid or invalid. Recall, deductive arguments are valid just in case 

their premises guarantee their conclusions; and validity is determined entirely by the form of the 

argument. The two logics we study will have different ways of identifying the logical form of 

arguments, and different methods of testing those forms for validity. These are two of the things a 

deductive logic must do: specify precise criteria for determining logical form and develop a way 

of testing it for validity. 

 

But before a logic can do those two things, there is a preliminary job: it must tame natural language. 

Real arguments that we care about evaluating are expressed in natural languages like English, 

Greek, etc. As we saw in our discussion of the logical fallacies in the last chapter, natural languages 

are unruly: they are filled with ambiguity and vagueness, and exhibit an overall lack of precision 

that makes it very difficult to conduct the kind of rigorous analysis necessary to determine whether 

or not an argument is valid. So before making that determination, a logic must do some tidying up; 

it must remove the imprecision inherent in natural language expressions of arguments and make 
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them suitable for rigorous analysis. There are various approaches to this task. Aristotelian Logic 

and Sentential logic adopt two different strategies. 

 

Aristotelian Logic seeks to tame natural language by restricting itself to a well-behaved, precise 

portion of the language. It only evaluates arguments that are expressed within that precisely 

delimited subset of the language. Sentential logic achieves precision by eschewing natural 

language entirely: it constructs its own artificial language, and only evaluates arguments expressed 

in its terms. 

 

This strategy may seem overly restrictive: if we limit ourselves to arguments expressed in a limited 

vocabulary—and especially if we leave behind natural language entirely—aren’t we going to miss 

lots of (all?) arguments that we care about? The answer is no, these approaches are not nearly as 

restrictive as they might seem. We can translate back and forth between the special portion of 

language in Aristotelian Logic and expressions in natural language that are outside its scope. 

Likewise, we can translate back and forth between the artificial language of Sentential logic and 

natural language. The process of translating from the unruly bits of natural language into these 

more precise alternatives is what removes the ambiguity, vagueness, etc. that stands in the way of 

rigorous analysis and evaluation. So, part of the task of taming natural language is showing how 

one’s alternative to it is nevertheless related to it—how it picks out the logically important features 

of natural language arguments while leaving behind their extraneous, recalcitrant bits. 

 

These, then, are the three tasks that a deductive logic must accomplish: 

 

1.  Tame natural language. 

2.  Precisely define logical form. 

3.  Develop a way to test logical forms for validity. 

 

The process for evaluating real arguments expressed in natural language is to render them precise 

and suitable for evaluation by translating them into the preferred vocabulary developed in step 1, 

then to identify and evaluate their forms according to the prescriptions of steps 2 and 3.  

 

We now proceed to discuss Aristotelian Logic, starting with its approach to taming natural 

language. 

 

 

II.  Classes and Categorical Propositions 

 

For Aristotle, the fundamental logical unit is the class. Classes are just sets of things—sets that we 

can pick out using language. The simplest way to identify a class is by using a plural noun: trees, 

clouds, asteroids, people—these are all classes. Names for classes can be grammatically more 

complex, too. We can modify the plural noun with an adjective: ‘rich people’ picks out a class.1 

Prepositional phrases can further specify: ‘rich people from Italy’ picks out a different class. The 

modifications can go on indefinitely: ‘rich people from Italy who made their fortunes in real estate 

and whose grandmothers were rumored to be secret lovers of Benito Mussolini’ picks out yet 

                                                 
1 See what I did there? 
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another class—which is either very small, or possibly empty, I don’t know. (Empty classes are just 

classes with no members; we’ll talk more about them later.) 

 

We will refer to names of classes as ‘class-terms’, or just ‘terms’ for short. Since for Aristotle the 

fundamental logical unit is the class, and since terms are the bits of language that pick out classes, 

Aristotle’s logic is often referred to as a ‘term logic’. This is in contrast to the logic we will study 

in the next chapter, Sentential logic, so-called because it takes the fundamental logical unit to be 

the proposition, and sentences are the linguistic vehicle for picking those out. 

 

Of course, Aristotelian Logic must also deal with propositions—we’re evaluating arguments here, 

and by definition those are just sets of propositions—but since classes are the fundamental logical 

unit, Aristotle restricts himself to a particular kind of proposition: categorical propositions. 

‘Category’ is just a synonym of ‘class’. Categorical propositions are propositions that make a claim 

about the relationship between two classes. This is the first step in taming natural language: 

Aristotelian Logic will only evaluate arguments made up entirely of categorical propositions. 

We’re limiting ourselves to a restricted portion of language—sentences expressing these kinds of 

propositions, which will feature two class terms—terms picking out the classes whose relationship 

is described in the categorical proposition. Soon, we will place further restrictions on the forms 

these sentences can take, but for now we will discuss categorical propositions generally. 

Again, categorical propositions make an assertion about the relationship between two classes. 

There are three possibilities here: 

 

(1) Whole Inclusion: one class is contained entirely within the other. 

Example: Class 1 = people; Class 2 = bipeds. The first class is entirely contained in 

the second; every person is a biped.2 

 

(2) Partial Inclusion: one class is partially contained within the other; the two classes have 

at least one member in common. 

Example: Class 1 = people; Class 2 = swimmers. Some people swim; some don’t. 

Some swimmers are people; some aren’t (fish, e.g.). These two classes overlap, but 

not entirely. 

 

(3) Exclusion: the two classes don’t have any members in common; they are exclusive. 

Example: Class 1 = people; Class 2 = birds. No people are birds; no birds are 

people. Batman notwithstanding (dude’s not really a bat; also, bats aren’t birds; 

robins are, but again, Robin’s not actually a bird, just a guy who dresses up like 

one). 

 

Given these considerations, we can (more or less) formally define categorical propositions: 

 

A categorical proposition is a claim about the relationship between two classes—call them 

S and P—that either affirms or denies that S is wholly or partially included in P.3 

 

                                                 
2 Even amputees. Being a biped is belonging to a species that naturally has two legs. 
3 Note that denying that S is even partially included in P is the same as affirming that S and P are exclusive. 
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Aristotle noted that, given this definition, there are four types of categorical proposition. We will 

discuss them in turn. 

 

The Four Types of Categorical Proposition 

 

Universal affirmative (A)4 

 

This type of proposition affirms the whole inclusion of the class S in the class P—it says that each 

member of S is also a member of P. The canonical expression of this proposition is a sentence of 

the form ‘All S are P’.  

 

It is worth noting at this point why we chose ‘S’ and ‘P’ as the symbols for generic class terms. 

That’s because the former is the grammatical subject (S) of the sentence, and the latter is the 

grammatical predicate (P). This pattern will hold for the other three types of categorical 

proposition. 

 

Back to the universal affirmative, A proposition. It affirms whole inclusion. For example, the 

sentence ‘All men are mortals’ expresses a proposition of this type, one that is true. ‘All men are 

Canadians’ also expresses a universal affirmative proposition, one that is false.  

 

For the sake of concreteness, let’s choose subject and predicate classes that we can use as go-to 

examples as we talk about each of the four types of categorical proposition. Let’s let S = logicians 

and P = jerks. The A proposition featuring these two classes is expressed by ‘All logicians are 

jerks’. (We’ll remain agnostic about whether it’s true or false.) 

 

When it comes time to test arguments for validity—the last step in the process we’ve just begun—

it will be convenient for us to represent the four types of categorical propositions pictorially. The 

basic form of the pictures will be two overlapping circles, with the left-hand circle representing 

the subject class and the right-hand circle representing the predicate class. Like this: 

 

 

                                                 
4 Since ‘Universal affirmative’—along with the names of the other three types of categorical proposition—is a bit of 

a mouthful, we will follow custom and assign the four categoricals (shorthand for ‘categorical propositions’) single-

letter nicknames. The universal affirmative is the A proposition. 
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To depict the four types of categorical propositions, we’ll modify this basic two-circle diagram by 

shading in parts of it or making marks inside the circles.  

 

Before we get to the specific depiction of the A proposition, though, let’s talk about what the basic 

two-circle diagram does. It divides the universe into four regions, to which we can assign numbers 

like this: 

 
Let’s talk about what’s inside each of the four regions if we take S to be the class of logicians and 

P to be the class of jerks.  

 

Region 1 is the portion of the S circle that doesn’t overlap with the P circle. These are things in 

the subject class but outside the predicate class; they are logicians who aren’t jerks. I never met 

him myself, but there’s no evidence in the historical record to indicate that Aristotle was anything 

but a gentleman. So Aristotle is one of the residents of region 1—a logician who’s not a jerk. 

 

Region 2 is the area of overlap between the subject and predicate classes; its residents are members 

of both. So here we have the logicians who are also jerks. Gottlob Frege, a 19th century German 

logician, is the most important innovator in the history of logic other than Aristotle. Also, it turns 

out, he was a huge jerk. He was a big-time anti-Semite. So Frege lives in region 2; he’s both a 

logician and a jerk. 

 

Region 3 is the portion of the P circle that doesn’t overlap with S. These are members of the 

predicate class—jerks, in our example—who are not members of the subject class—not logicians. 

This is where the non-logician jerks live. Donald Trump is a resident of region 3. The guy is clearly 

a jerk—and just as clearly, not a logician.5 

 

Region 4 is—everything else. It’s all the things that are outside both the subject and predicate 

classes—things that are neither logicians nor jerks. You know who seems nice, but isn’t a logician? 

Beyoncé. She lives in region 4. But so do lots and lots and lots of other things: the planet Jupiter 

is neither a logician nor a jerk; it’s in there with Beyoncé, too. As is the left-front tire of my wife’s 

car. And the second-smallest brick in the Great Wall of China. And so on. 

 

                                                 
5 I’ve been using Trump in this example for a decade; I’m not going to stop just because he got elected president. 

Moreover, I take it that even Trump’s supporters would acknowledge that he’s a jerk. He tells it like it is and doesn’t 

care whose feelings get hurt—or something like that, right? 
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So much for the blank two-circle diagram and how it carves up the universe. What we want to 

figure out is how to alter that diagram so that we end up with a picture of the universal affirmative 

proposition. Our particular example of an A proposition is that all logicians are jerks. How do we 

draw a picture of that, using the two circles as our starting point? Well, think about it this way: 

when we say all logicians are jerks, what we’re really saying is that a certain kind of thing doesn’t 

exist; there’s no such thing as a non-jerky logician. In other words, despite what I said above about 

Aristotle, region 1 is empty, according to this proposition (which, again, may or may not be true; 

it doesn’t matter whether it’s true or not; we’re just trying to figure out how to draw a picture that 

captures the claim it makes). To depict emptiness, we will adopt the convention of shading in the 

relevant region(s) of the diagram. So our picture of the universal affirmative looks like this: 

 
All S are P means that you won’t find any members of S that are outside the P circle (no logicians 

who aren’t jerks). The place in the diagram where they might’ve been such things is blotted out to 

indicate its emptiness. The only portion of S that remains as a viable space is inside the P circle, 

in what we called region 2 (the logicians you do find will all be jerks). 

 

A reasonable question could be raised at this point: why did we draw the universal affirmative that 

way, instead of another, alternative and possibly more intuitive way? A propositions affirm whole 

inclusion—that S in entirely contained within P. Isn’t the obvious way to depict that state of affairs 

more like this: 

 
S entirely contained within P. Easy. Why bother with the overlapping circles and the shading? 

 

There’s nothing wrong with this alternative depiction of the universal affirmative; it captures the 

claim being made. We adopt the first alternative depiction for purely practical reasons: when it 

comes time to test arguments for validity, we’re going to use these pictures; and our method will 
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depend on our four types of categorical propositions all being depicted starting with the same basic 

two-overlapping-circle diagram, with shading and marks inside. These diagrams, as you may 

know, are called “Venn Diagrams”. They are named after the 19th century English logician John 

Venn, who invented them specifically as an easier means of testing arguments for validity in 

Aristotelian Logic (things were more unwieldy before Venn’s innovation). It turns out Venn’s 

method only works if we start with the overlapping circles for all four of the types of categorical 

proposition. So that’s what we go with. 

 

Universal negative (E) 

 

This type of proposition denies that S is even partially included in P. Put another way: it affirms 

that S and P are exclusive—that they have no members in common. The canonical expression of 

this proposition is a sentence of the form ‘No S are P’. So, for example, the sentence ‘No dogs are 

cats’ expresses a true universal negative proposition; the sentence ‘No animals are cats’ expresses 

a false one. 

 

Again, we want to think about how to depict this type of proposition using the standard two-circle 

Venn diagram. Think about the proposition that no logicians are jerks. How do we draw a picture 

of this claim? Well, as we said, E propositions tell us that the two classes don’t have any members 

in common. The region of the two-circle diagram where there are members of both classes is the 

area of overlap in the picture (what we referred to as region 2 above). The universal negative 

proposition tells us that there’s nothing in there. So if I claim that no logicians are jerks, I’m saying 

that, contrary to my claims above about the jerkiness of Gottlob Frege, no, there’s no such thing 

as a logician-jerk. Region two is empty, and so we shade it out: 

 
 

Particular affirmative (I) 

 

This type of proposition affirms that S is partially included in P. Its canonical expression is a 

sentence of the form ‘Some S are P’. So, for example, ‘Some sailors are pirates’ expresses a true 

particular affirmative proposition; ‘Some sumo wrestlers are pigeons’ expresses a false one. 

 

Before we talk about how to depict I propositions with a Venn diagram, we need to discuss the 

word ‘some’.  Remember, in Aristotelian Logic we’re taming natural language by restricting 

ourselves to a well-behaved portion of it—sentences expressing categorical propositions. We’re 
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proposing to use sentences with the word ‘some’ in them. ‘Some’, however, is not particularly 

well-behaved, and we’re going to have to get it in line before we proceed. 

 

Consider this utterance: “Some Republican voters are gun owners.” This is true, and it 

communicates to the listener the fact that there’s some overlap between the classes of Republican 

voters and gun owners. But it also communicates something more—namely, that some of those 

Republicans aren’t gun owners. This is a fairly typical implicature (recall our discussion of this 

linguistic phenomenon in Chapter 2, when we looked at the fallacy of equivocation): when we say 

that some are, we also communicate that some are not. 

 

But there are times when we use ‘some’ and don’t implicate that some are not. Suppose you’re 

talking to your mom, and you mention that you’re reading a logic book. For some reason, your 

mom’s always been curious about logic books, and asks you whether they’re a good read.6 You 

respond, “Well, mom, I can tell you this for sure: Some logic books are boring. You should see 

this book I’m reading now; it’s a total snooze-fest!” In this case, you say that some logic books 

are boring based on your experience with this particular book, but you do not implicate that some 

logic books are not boring; for all you know, all logic books are boring—it’s just impossible to 

write an exciting logic book. This is a perfectly legitimate use of the word ‘some’, where all it 

means is that there is at least one: when you utter ‘some logic books are boring’, all you 

communicate is that there is at least one boring logic book (this one, the one you’re reading). 

  

This is a bit of natural-language unruliness that we must deal with: sometimes when we use the 

word ‘some’, we implicate that some are not; other times, we don’t, only communicating that at 

least one is. When we use ‘some’ in Aristotelian Logic, we need to know precisely what’s being 

said. So we choose: ‘some’ means ‘there is at least one’. ‘Some S are P’ tells us that those two 

classes have at least one member in common, and nothing more. ‘Some sailors are pirates’ means 

that there’s at least one sailor who’s also a pirate, and that’s it. There is no implication that some 

sailors are not pirates; at least one of them is, and for all we know, all of them are.7  

 

This can confuse people, so it’s worth repeating. Heck, let’s indent it: 

 

‘Some’ means ‘there is at least one’, and that’s it. It does not imply that some aren’t. 

 

With that out of the way, we can turn our attention to the Venn diagram for the particular 

affirmative. It makes the assertion that S and P have at least one member in common. Turning to 

our concrete example, the sentence ‘Some logicians are jerks’ makes the claim that there is at least 

one logician who is a jerk. (In fact, this is true: Gottlob Frege was an anti-Semitic jerk.) How do 

we draw a picture of this? We need to indicate that there’s at least one thing in the area of overlap 

between the two circles on the diagram—at least one thing inside of region 2. We do this by 

drawing an X: 

                                                 
6 Just play along here. 
7 The justification for this choice requires an argument, which I will not make here. The basic idea is that the ‘some 

aren’t’ bit that’s often communicated is not part of the core meaning of ‘some’; it’s an implicature, which is something 

that’s (often, but not always) communicated over and above the core meaning. 
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Particular negative (O) 

 

This type of proposition denies that S is wholly included in P. It claims that there is at least one 

member of S that is not a member of P. Given that ‘some’ means ‘there is at least one’, the 

canonical expression of this proposition is ‘Some S are not P’—there’s at least one member of S 

that the two classes do not have in common. ‘Some sailors are not pirates’ expresses a true 

particular negative proposition; ‘Some dogs are not animals’ expresses a false one. 

 

The Venn diagram for O propositions is simple. We need to indicate, on our picture, that there’s 

at least one thing that’s inside of S, but outside of P. To depict the fact that some logicians are not 

jerks, we need to put Aristotle (again, not a jerk, I’m pretty sure) inside the S circle, but outside 

the P circle. As with the diagram for the I proposition, we indicate the existence of at least one 

thing by drawing an X in the appropriate place: 

 
A Note on Terminology 

 

It is commonly said that the four types of categorical propositions each have a quantity and a 

quality. There are two quantities: universal and particular. There are two qualities: affirmative and 

negative. There are four possible combinations of quantity and quality, hence four types of 

categorical proposition. 

 

The universal propositions—A and E, affirmative and negative—are so-called because they each 

make a claim about the entire subject class. If I claim that all hobos are whiskey drinkers, I’ve 
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made an assertion that covers every single hobo, every member of that class. Similarly, if I claim 

that no chickens are race car drivers, I’ve made an assertion covering all the chickens—they all 

fail to drive race cars. 

 

The particular propositions—I and O, affirmative and negative— on the other hand, do not make 

claims about every member of the subject class. ‘Some dinosaurs were herbivores’ just makes the 

claim that there was at least one plant-eating dinosaur; we don’t learn about all the dinosaurs. 

Similar remarks apply to an O proposition like ‘Some dinosaurs were not carnivores’. Remember, 

‘some’ just means ‘at least one’. 

 

The affirmative propositions—A and I, universal and particular—make affirmative claims about 

the relationship between two classes. A propositions affirm whole inclusion; I propositions affirm 

partial inclusion. Trivial fact: the Latin word meaning ‘I affirm’ is affirmo; the A and the I in that 

word are where the one-letter nicknames for the universal and particular affirmatives come from. 

 

The negative propositions—E and O, universal and particular—make negative claims about the 

relationship between two classes. E propositions deny even partial inclusion; O propositions deny 

whole inclusion. Trivial fact: the Latin word meaning ‘I deny’ is nego; the E and the O in that 

word are where the one-letter nicknames for the universal and particular negatives come from. 

 

Standard form for Sentences Expressing Categorical Propositions 

 

To tame natural language, Aristotelian Logic limits itself to that portion of language that expresses 

categorical propositions. Above, we gave “canonical” sentences for each of the four types of 

categorical proposition: ‘All S are P’ for the universal affirmative; ‘No S are P’ for the universal 

negative; ‘Some S are P’ for the particular affirmative; and ‘Some S are not P’ for the particular 

negative. These are not the only ways of expressing these propositions in English, but we will 

restrict ourselves to these standard forms. That is, we will only evaluate arguments whose premises 

and conclusion are expressed with sentences with these canonical forms. 

 

Generally speaking, here is the template for sentences qualifying as standard form: 

 

[Quantifier] Subject Term <copula> (not) Predicate Term   

 

Standard form sentences begin with a quantifier—a word that indicates the quantity of the 

categorical proposition expressed. Restriction: only sentences beginning with ‘All’, ‘No’, or 

‘Some’ qualify as standard form. 

 

Subject and predicate terms pick out the two classes involved in the categorical proposition. 

Restriction: subject and predicate terms must be nouns or noun-phrases (nouns with modifiers) in 

order for a sentence to be in standard form. 

 

The copula is a version of the verb ‘to be’ (‘are’, ‘is’, ‘were’, ‘will be’, etc.). Degree of freedom: 

it doesn’t matter which version of the copula occurs in the sentence; it may be any number or tense. 
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‘Some sailors are pirates’ and ‘Some sailors were pirates’ both count as standard form, for 

example.8 

 

The word ‘not’ occurs in the standard form expression of the particular negative, O proposition: 

‘Some sailors are not pirates’. Restriction: the word ‘not’ can only occur in sentences expressing 

O propositions; ‘not’ appearing with any quantifier other than ‘some’ is a deviation from standard 

form. 

 

We now have a precise delimitation of the portion of natural language to which Aristotelian Logic 

restricts itself: only sentences in standard form. But now a worry that we raised earlier becomes 

acute: if we can only evaluate arguments whose premises and conclusions are expressed with 

standard form sentences, aren’t we severely, perhaps ridiculously, constrained? Has anyone, ever, 

outside a logic book, expressed a real-life argument that way?  

 

This is where translation comes in. Lots of sentences that are not in standard form can be translated 

into standard form sentences that have the same meaning. Aristotle himself believed that all 

propositions, no matter how apparently complex or divergent, could ultimately be analyzed as one 

of the four types of categorical proposition. Though this is, to put it mildly, not a widely held belief 

today, it still had an enormous influence in the history of logic, since Aristotle’s system was 

preeminent for more than 2,000 years. Over that time, logicians developed ever more elaborate 

procedures for analyzing a dizzying variety of non-Standard form sentences as expressing one of 

the four types of categorical propositions, and translating them accordingly. An exhaustive survey 

of those inquiries would be exhausting, and beyond the scope of this book. It will be enough to 

look at a few simple examples to get an idea of how many apparently deviant expressions can be 

treated by Aristotelian Logic. Our goal is simply to allay concerns that in restricting ourselves to 

standard form sentences we are severely limiting our logic’s power to evaluate real-life arguments. 

 

Let’s consider the first deductively valid argument we encountered in this book, the one about 

Socrates: All men are mortal; Socrates is a man; therefore, Socrates is mortal. This argument has 

three propositions in it, but none of the three sentences expressing them are in standard form. The 

first sentence, ‘All men are mortal’, may appear to fit the bill, but it has a subtle flaw: ‘mortal’ is 

an adjective, not a noun. Class terms are required to be nouns or noun phrases. But this is an easy 

fix: add an ‘s’ to the end and you get a plural noun. ‘All men are mortals’ is in standard form; it 

expresses a universal affirmative, A proposition. This prescription applies generally. Predicate 

adjectives can be replaced with suitable noun phrases most easily by just inserting the generic noun 

‘things’: ‘Some men are handsome’ becomes ‘Some men are handsome things’; ‘No priests are 

silly’ becomes ‘No priests are silly things’. 

 

Back to the Socrates argument. The second premise is also problematic: ‘Socrates is a man’. First 

of all, it doesn’t have a quantifier. Second, its subject term, ‘Socrates’, picks out an individual 

person; we’re supposed to be dealing with classes here, right? Well, that’s right, but it’s not really 

                                                 
8 Aristotelian Logic is blind to tense: present, past, future, past perfect, future perfect, etc. are all the same. Sometimes 

the validity of an inference depends on tense. Aristotelian Logic cannot make such judgments. This is one of the 

consequences of limiting ourselves to a simpler, more precise portion of natural language. There are more advanced 

logics that take verb tense into consideration (they’re unsurprisingly called “tense logics”), but that’s a topic for a 

different book. 
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a problem. We can just make the subject class a unit class—a class containing exactly one member, 

namely Socrates. Now we can understand the sentence as expressing the claim that the single 

member of that class is also a member of the class of men. That is, it’s a universal affirmative—

there’s whole inclusion of the Socrates unit-class in the class of men. The sentence we need, then, 

starts with the quantifier ‘All’, and to make the grammar work, we pick a plural noun to name the 

Socrates class: ‘All Socrateses are men’. Is ‘Socrateses’ the plural of ‘Socrates’? I can’t think of 

anything better. Anyway, the point is, that word picks out a class that has exactly one member, 

Socrates. Sentences with singular subjects can be rendered as universals. If I had the sentence 

‘Socrates is not alive’, I could render it as a universal negative: ‘No Socrateses are living things’. 

 

There are other things to consider. English comes with a variety of quantifier words: ‘each’, 

‘every’, ‘any’, and so on. Common sense tells us how to translate sentences featuring these into 

standard form: switch to the appropriate standard form quantifier—‘All’, ‘No’, or ‘Some’. ‘Every 

teacher is a hard worker’ becomes ‘All teachers are hard workers’, for example. Sometimes 

quantifier words are omitted, but it’s clear from context what’s going on. ‘Dogs are animals’ means 

‘All dogs are animals’; ‘People are waiting in line’ can be rendered as ‘Some people are things 

that are waiting in line’. Some sentences have a verb other than the copula. ‘Some people eat 

rabbit’, for example, can be translated into ‘Some people are rabbit-eaters’. Sometimes the word 

‘not’ appears in a sentence that has a quantifier other than ‘some’. ‘Not all mammals are 

carnivores’, for example, can be translated into ‘Some mammals are not carnivores’.  

 

The list goes on. As I said, centuries of work has been done on the task of translating sentences 

into standard form. We can stop here, I think, and simply accept that the restriction to standard 

form sentences does not seriously limit the arguments that Aristotelian Logic can evaluate. 

 

 

III.  The Square of Opposition 

 

Having established the boundaries of our domain of logically well-behaved natural language, we 

turn now to an investigation of the properties of its inhabitants. The four types of categoricals are 

related to one another in systematic ways; we will look at those relationships. 

 

The relationships are inferential: we can often infer, for example, from the truth of one of the four 

categoricals, whether the other three are true or false. These inferential relationships among the 

four categorical propositions are summarized graphically in a diagram: The Square of Opposition. 

The diagram looks like this: 
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The four types of categorical propositions are arranged at the four corners of the square, and along 

the sides and diagonals are marked the relationships that obtain between pairs of them. We take 

these relationships up in turn. 

 

Contradictories 

 

Contradictory pairs of categorical propositions are at opposite corners from one another on the 

Square of Opposition. A and O propositions are contradictory; E and I propositions are 

contradictory. What it means for a pair of propositions to be contradictory is this: they have 

opposite truth-values; when one is true, the other must be false, and vice versa. 

 

This is pretty intuitive. Consider an A proposition—all sailors are pirates. Suppose I make that 

claim. How do you contradict me? How do you prove I’m wrong? “My brother’s in the Navy,” 

you might protest. “He’s a sailor, but he’s not a pirate.” That would do the trick. The way you 

contradict a universal affirmative claim—a claim that all S are P—is by showing that there’s at 

least one S (a sailor in this case, your brother) who’s not a P (not a pirate, as your brother is not). 

At least one S that’s not a P—that’s just the particular negative, O proposition, that some S are not 

P. (Remember: ‘some’ means ‘there is at least one’.) A and O propositions make opposite, 

contradictory claims. If it’s false that all sailors are pirates, then it must be true that some of them 

aren’t; that’s just how you show it’s false. Likewise, if it’s true that all dogs are animals (it is), 

then it must be false that some of them are not (you’re not going to find even one dog that’s not an 

animal). A and O propositions have opposite truth-values. 

 

Likewise for E and I propositions. If I claim that no saints are priests, and you want to contradict 

me, what you need to do is come up with a saint who was a priest. It’s not hard: Saint Thomas 
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Aquinas (who was the most prominent medieval interpreter of Aristotle, by the way, and a terrific 

philosopher in his own right) was a priest. So, to contradict universal negative claim—that no S 

are P—you need to show that there’s at least one S (a saint in this case, Thomas Aquinas) who is 

in fact a P (a priest, as Aquinas was). At least one S that is a P—that’s just the particular affirmative, 

I proposition, that some S are P. (Again, ‘some’ means ‘there is at least one’.) E and I propositions 

make opposite, contradictory claims. If it’s false that no saints are priests, it must be true that some 

of them are; that’s just how you show it’s false. Likewise, it’s true that no cats are dogs (it is), then 

it must be false that some of them are (you’re not going to find even one cat that’s a dog). E and I 

propositions have opposite truth-values. 

 

Contraries 

 

The two universal propositions—A and E, along the top of the Square—are a contrary pair. This 

is a slightly weaker form of opposition than being contradictory. Being contrary means that they 

can’t both be true, but they could both be false—though they needn’t both be false; one could be 

true and the other false. 

 

Again, this is intuitive. Suppose I claim the universal affirmative, “All dogs go to heaven,” and 

you claim the corresponding universal negative, “No dogs go to heaven.” (Those sentences aren’t 

in standard form, but the translation is easy.) Obvious observation: we can’t both be right; that is, 

both claims can’t be true. On the other hand, we could both be wrong. Suppose getting into heaven, 

for dogs, is the way they say it is for people: if you’re good and stuff, then you get in; but if you’re 

bad, oh boy—it’s the Other Place for you. In that case, both of our claims are false: some dogs (the 

good ones) go to heaven, but some dogs (the bad ones, the ones who bite kids, maybe) don’t. But 

that picture might be wrong, too. I could be right and you could be wrong: God loves all dogs 

equally and they get a free pass into heaven. Or, I could be wrong and you could be right: God 

hates dogs and doesn’t let any of them in; or maybe there is no heaven at all, and so nobody goes 

there, dogs included.  

 

Subcontraries 

 

Along the bottom of the Square we have the two particular propositions—I and O—and they are 

said to be subcontraries. This means they can’t both be false, but they could both be true—though 

they needn’t be; one could be true and the other false. 

 

It’s easy to see how both I and O could be true. As a matter of fact, some sailors are pirates. That’s 

true. Also, as a matter of fact, some of them are not. It’s also easy to see how one of the particular 

propositions could be true and the other false, provided we keep in mind that ‘some’ just means 

‘there is at least one’. It’s true that some dogs are mammals—that is, there is at least one dog that’s 

a mammal—so that I proposition is true. In fact, all of them are—the A proposition is true as well. 

Which means, since A and O are contradictories, that the corresponding O proposition—that some 

dogs are not mammals—must be false. Likewise, it’s true that some women are not (Catholic) 

priests (at least one women isn’t a priest); and it’s false that some women are priests (the Church 

doesn’t allow it). So O can be true while I is false. 
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It’s a bit harder to see why both particular propositions can’t be false. Why can’t ‘Some surfers 

are priests’ and ‘Some surfers are not priests’ both be false? It’s not immediately obvious. But 

think it through: if the I (some surfers are priests) is false, that means the E (no surfers are priests) 

must be true, since I and E are contradictory; and if the O (some surfers are not priests) is false, 

that means the A (all surfers are priests) must be true, since O and A are contradictory. That is to 

say, if I and O were both false, then the corresponding A and E propositions would both have to 

be true. But, as we’ve seen already, this is (obviously) impossible: if I claim that all surfers are 

priests and you claim that none of them are, we can’t both be right.  

 

Subalterns 

 

The particular propositions at the bottom of the table—I and O—are subalterns of the universal 

propositions directly above them—A and E, respectively.9 This means that the pairs have the 

following relationship: if the universal proposition is true, then the particular proposition (its 

subaltern) must also be true. That is, if an A propositions is true, it’s corresponding I proposition 

must also be true; if an E proposition is true, its corresponding O proposition must also be true. 

 

This is intuitive if we keep in mind, as always, that ‘some’ means ‘there is at least one’. Suppose 

the A proposition that all whales are mammals is true (it is); then the corresponding I proposition, 

that some whales are mammals, must also be true. Again, ‘some whales are mammals’ just means 

‘at least one whale is a mammal’; if all of them are, then at least one of them is! Similarly, on the 

negative side of the square, if it’s true the no priests are women (universal negative, E), then it’s 

got to be true that some priests are not women (particular negative, O)—that at least one priest is 

not a woman. If none of them are, then at least one isn’t! 

 

Notice that these relationships are depicted in a slightly different way from the others on the Square 

of Opposition: there’s an arrow pointing toward the bottom. This is because the relationship is not 

symmetrical. If the proposition on top is true, then the one on the bottom must also be true; but the 

reverse is not the case. If an I proposition is true—some sailors are pirates—it doesn’t follow that 

the corresponding A proposition—that all sailors are pirates—is true. Likewise, the truth of an O 

proposition—some surfers are not priests—does not guarantee the truth of the corresponding E 

proposition—that no surfers are priests.10  

 

Truth, as it were, travels down the side of the Square. Falsehood does not: if the universal 

proposition is false, that doesn’t tell us anything about the truth or falsehood of the corresponding 

particular. You could have a false A proposition—all men are priests—with a true corresponding 

I—some men are priests. But you could also have a false A proposition—all cats are dogs—whose 

corresponding I—some cats are dogs—is also false. Likewise, you could have a false E 

proposition—no men are priests—with a true corresponding O—some men are not priests. But 

you could also have a false E proposition—no whales are mammals—whose corresponding O—

some whales are not mammals—is also false.  

 

                                                 
9 And the universal propositions are called superalterns. 
10 I doubt it’s true; there’s gotta be at least one surfing priest, no? Then again…. Point is, the O doesn’t tell us whether 

it’s true or not. 



Aristotelian Logic 83 

 

 

Falsehood doesn’t travel down the side of the Square, but it does travel up. That is, if a particular 

proposition—I or O—is false, then its corresponding universal proposition—A or E, 

respectively—must also be false. Think about it in the abstract: if it’s false that some S are P, that 

means that there’s not even on S that’s also a P; well in that case, there’s no way all the Ss are Ps! 

False I, false A. Likewise on the negative side: if it’s false that some S are not P, that means you 

won’t find even one S that’s not a P, which is to say all the Ss are Ps; in that case, it’s false that no 

S are P (A and E are contraries). False O, false E. 

 

Inferences 

 

Given information about the truth or falsity of a categorical proposition, we can use the 

relationships summed up in the Square of Opposition to make inferences about the truth-values of 

the other three types of categorical proposition.  

 

Here’s what I mean. Suppose a universal affirmative proposition—an A proposition—is true. What 

are the truth-values of the corresponding E, I, and O propositions? (By “corresponding”, I mean 

propositions with the same subject and predicate classes.) The Square can help us answer these 

questions. First of all, A is in the opposite corner from O—they’re contradictory. That means A 

and O have to have opposite truth-values. Well, if A is true, as we’re supposing, then the 

corresponding O proposition has to be false. Also, A and E are contraries. That means that they 

can’t both be true. Well, we’re supposing that the A is true, so then the corresponding E must be 

false. What about the I proposition? Three ways to attack this one, and they all agree that the I 

must be true: (1) I is the subaltern of A, so if A is true, then I must be true as well; (2) I is the 

contradictory of E, and we’ve already determined that E must be false, so I must be true; (3) I and 

O are subcontraries, meaning they can’t both be false, and since we’ve already determined that O 

is false, it follows that I must be true. 

 

Summing up: if an A proposition is true, the corresponding E is false, I is true, and O is false. 

 

Let’s try another one: suppose a universal negative, E proposition is true. What about the 

corresponding A, I, and O propositions? Well, again, A and E are contraries—can’t both be true—

so A must be false. I is the contradictory of E, so it must be false—the opposite of I’s truth-value. 

And since O is subaltern to E, it must be true because E is. 

 

If an E proposition is true, the corresponding A is false, I is false, and O is true. 

 

Another. Suppose a particular affirmative, I proposition is true. What about the other three? Well, 

E is its contradictory, so it must be false. And if some S are P, that means some of them aren’t—

so the O is also true. And since A is the contradictory of O… WAIT JUST A MINUTE! Go back 

and read that again. Do you see what happened? “And if some S are P, that means some of them 

aren’t….” No it doesn’t! Remember, ‘some’ means ‘there is at least one’. If some S are P, that just 

means at least one S is a P—and for all we know, all of them might be; and then again, maybe not. 

I and O are subcontraries: they can’t both be false, they could both be true, and one could be true 

and the other false. Knowing that I is true tells us nothing about the truth-value of the 

corresponding O, or the corresponding A. That some are, meaning at least one is, leaves open the 
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possibility that all of them are; but then again, maybe not. The fact is, based on the supposition 

that an I is true, we can only know the truth-value of the corresponding E for sure. 

 

If an I proposition is true, then the corresponding E is false, and A and O are of unknown truth-

value. 

 

 

EXERCISES 

 

1. Suppose an O proposition is true. What are the truth-values of the corresponding A, E, and I 

propositions, according to the Square of Opposition?  

 

2. Suppose an A proposition is false. What are the truth-values of the corresponding E, I, and O 

propositions, according to the Square of Opposition? 

 

3. Suppose an E proposition is false. What are the truth-values of the corresponding A, I, and O 

propositions, according to the Square of Opposition? 

 

4. Suppose an I proposition is false. What are the truth-values of the corresponding A, E, and O 

propositions, according to the Square of Opposition? 

 

5. Suppose an O proposition is false. What are the truth-values of the corresponding A, E, and I 

propositions, according to the Square of Opposition? 

 

 

IV.  Operations on Categorical Sentences 

 

We continue our exploration of the portion of natural language to which Aristotle’s logic restricts 

itself—the standard form sentences expressing categorical propositions. To familiarize ourselves 

more intimately with these, we will look at how they respond when we perform various operations 

on them, when we manipulate them in various ways. We will examine three operations: 

conversion, obversion, and contraposition. Each of these alters the standard form sentences in 

some way. The question we will ask is whether the new sentence that results from the manipulation 

is equivalent to the original sentence; that is, does the new sentence express the same proposition 

as the original? 

 

Conversion 

 

Performing conversion on a categorical sentence involves changing the order of the subject and 

predicate terms. The result of this operation is a new sentence, which is said to be the converse of 

the original sentence. Our question is: when does performing conversion produce an equivalent 

new sentence, a converse that expresses the same proposition as the converted original? We will 

look at all four types standard form sentence, answering the question for each. 
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Let’s perform conversion on a sentence expressing a universal affirmative, A proposition and see 

what happens. ‘All dogs are animals’ is such a sentence. conversion switches the subject and 

predicate terms, so the converse sentence is ‘All animals are dogs’. Does the converse express the 

same proposition as the original? Are they equivalent? Heck, no! The original sentence expresses 

the true proposition that all dogs are animals; the converse expresses the utterly false proposition 

that all animals are dogs. Converting an A sentence produces a new sentence that is not equivalent 

to the original. 

 

This means that the effect on truth-value, in the abstract, of converting A sentences, is 

unpredictable. Sometimes, as with ‘All dogs are animals’, conversion will lead you from a truth to 

a falsehood. Other times, it may lead from truth to truth: ‘All bachelors are unmarried men’ and 

‘All unmarried men are bachelors’ express different propositions, but both of them are true 

(because it so happens that, by definition, a bachelor is just an unmarried man). conversion of an 

A could also lead from falsehood to falsehood, as with the transition from ‘All dogs are bats’ to 

‘All bats are dogs’. And it could lead from falsehood to truth: just reverse the order of the first 

conversion we looked at, from ‘All animals are dogs’ to ‘All dogs are animals’. 

 

Again, the point here is that, because conversion of A sentences produces a converse that expresses 

a different proposition than the original, we cannot know what the effect of the conversion will be 

on truth-value. 

 

How about conversion of sentences expressing universal negative, E propositions? ‘No dogs are 

cats’ is such a sentence. Its converse would then be ‘No cats are dogs’. Are they equivalent? Yes, 

of course. Remember, an E proposition denies even partial inclusion; it makes the claim that the 

two classes involved don’t have any members in common. It doesn’t matter which of the two 

classes is listed first in the sentence expressing that proposition—you still get the assertion that the 

two classes are exclusive. This is true of E sentences generally: performing conversion on them 

always produces a new sentence that is equivalent to the original. 

 

It is also true of sentences expressing particular affirmative, I propositions. ‘Some sailors are 

pirates’, after conversion, becomes ‘Some pirates are sailors’. These express the same proposition: 

they make the claim that the two classes have at least one member in common—there is at least 

one thing that is both a sailor and a pirate. Again, it doesn’t matter what order you put the class 

terms in; I sentences express the assertion that there’s overlap between the two classes. An I 

sentence and its converse are always equivalent. 

 

The same cannot be said of sentences expressing particular negative, O propositions. Consider 

‘Some men are not priests’. That expresses a true proposition. But its converse, ‘Some priests are 

not men’ expresses a different proposition; we know it’s a different proposition because it’s false.11 

That is all we need to show that an operation does not produce equivalent sentences: one 

counterexample. As above with A sentences, this means that the effect on truth-value of converting 

O sentences is unpredictable. It can take us from truth to falsehood, as in this example, or from 

truth to truth, falsehood to falsehood, falsehood to truth. In the abstract, we cannot know the effect 

on truth of converting O sentences, since the converse expresses a different proposition from the 

original. 

                                                 
11 As always, I’m using ‘priests’ to refer to Catholic priests, all of whom are men. 
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Summary for conversion: for E and I, converses are equivalent; for A and O, converses are not. 

 

Obversion 

 

Before we talk about our next operation, obversion, we need to introduce a new concept: class 

complements. The complement of a class, call it S, is another class which contains all the things 

that are not members of S. So, for example, the complement of the class of trees is just all the 

things that aren’t trees. The easiest way to name class complements is just to stick the prefix ‘non’ 

in front of the original class name. So the complement of trees is non-trees. Be careful: it may be 

tempting, for example, to say that the complement of Republicans is Democrats. But that’s not 

right. The complement of Republicans is a much bigger class, containing all the non-Republicans: 

not just Democrats, but Communists and Libertarians and Independents and Greens; oh, and a 

bunch of other things, too—like the planet Jupiter (not a Republican), my left pinkie toe, the Great 

Wall of China, etc., etc.  

 

As a matter of notational convention, if we use a capital letter like S to refer to a class, we will 

denote the complement of that class as ~ S, which we’ll read as “tilde-S.” 

 

Back to obversion. Here’s how this operation works: first, you change the quality of the sentence 

(from affirmative to negative, or vice versa); then, you replace the predicate with its complement. 

The result of performing obversion on a sentence is called the obverse of the original. 

 

It turns out that performing obversion on a sentence always produces a new sentence that’s 

equivalent to it; a sentence and its obverse always express the same proposition. That means they 

share a truth-value: if a sentence is true, so is its obverse; if a sentence is false, its obverse is false, 

too. We can see that this is so by looking at the result of performing obversion on each of the four 

types of standard form sentences. 

 

We’ll start with A sentences. Consider ‘All ducks are swimmers’. To perform obversion on this 

sentence, we first change its quality. This is a universal affirmative. Its quality is affirmative. So 

we change that to negative, keeping the quantity (universal) the same. Our new sentence is going 

to be a universal negative, E sentence—something of the form No S are P. Next, we replace the 

predicate with its complement. The predicate of the sentence is ‘swimmers’. What’s the 

complement of that class? All the things that aren’t swimmers: non-swimmers. So the obverse of 

the original A sentence is this: ‘No ducks are non-swimmers’.  

 

Now, are these two sentences equivalent? Yes. ‘All ducks are swimmers’ expresses the universal 

affirmative proposition, asserting that the class of ducks is entirely contained in the class of 

swimmers. That is to say, any duck you find will also be in the swimmer class. Another way of 

putting it: you won’t find any ducks who aren’t in the class of swimmers. In other words, no ducks 

fail to be swimmers. Or: ‘No ducks are non-swimmers’. The A sentence and its obverse are 

equivalent; they express the same proposition, make the same claim about the relationship between 

the class of ducks and the class of swimmers. 
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Let’s try obversion on a universal negative, E sentence. ‘No women are priests’ is one. First, we 

change its quality from negative to affirmative: it becomes a universal affirmative, A sentence—

something of the form All S are P. Next, we replace it predicate, ‘priests’, with its complement, 

‘non-priests’. The result: ‘All women are non-priests’. Is that equivalent to the original? It tells us 

that all women are outside the class of priests. In other words, none of them are priests. That is, 

‘No women are priests’. Yes, both the original sentence and its obverse tell us that the classes of 

women and priests are exclusive. 

 

Next, the particular affirmative—an I sentence like ‘Some politicians are Democrats’. OK. First, 

change the quality—from affirmative to negative. Our obverse will be a particular negative, O 

sentence—something of the form Some S are not P. Now, replace ‘Democrats’ with ‘non-

Democrats’, stick it in the predicate slot, and we get ‘Some politicians are not non-Democrats’. 

Well, that’s not exactly grammatically elegant, but the meaning is clear: not being a non-Democrat 

is just being a Democrat. This says the same are the original, namely that some politicians are 

Democrats. 

 

Finally, particular negative, O. We’ll try ‘Some plants are not flowers’. Changing from negative 

to affirmative means our obverse will be an I—Some S are P. We replace ‘flowers’ with ‘non-

flowers’ and get ‘Some plants are non-flowers’. We went from ‘Some plants are not flowers’ to 

‘Some plants are non-flowers’. Obviously, those are equivalent. 

 

Summary for obversion: obverses are equivalent for A, E, I, and O. 

 

Contraposition 

 

Our last operation is contraposition. Unlike obversion, and like conversion, it doesn’t involve 

changing the type (A, E, I, O) of the sentence we’re operating on. Rather, again, like conversion, 

we just manipulate the subject and predicate. Here’s how: replace the subject with the complement 

of the predicate; and replace the predicate with the complement of the subject. The result of 

performing contraposition on a sentence is called its contrapositive. 

 

Let’s perform contraposition on an A sentence: ‘All men are mortals’. To form its contrapositive, 

we put the complement of the predicate—non-mortals—into subject position and the complement 

of the subject—non-men—into predicate position: ‘All non-mortals are non-men’. The question, 

as always: are these sentences equivalent? This one’s a bit hard to see. Let’s use Venn diagrams 

to help us think it through. First, we know what the diagram for ‘All men are mortals’ looks like; 

that sentence claims that there’s no such thing as a man who’s not a mortal, so we blot out the 

portion of the ‘men’ circle that’s not inside the ‘mortals’ circle: 
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Next, let’s think through how we would diagram ‘All non-mortals are non-men’. If we change our 

circles to ‘non-men’ and ‘non-mortals’, respectively, it’s easy; when you’re diagramming an A 

proposition, you just blot out the part of the left-hand (subject) circle that doesn’t overlap with the 

right-hand (predicate) circle. There’s no such thing as non-men who aren’t non-mortals: 

 

 
 

But how do we compare this diagram with the one for ‘All men are mortals’ to see if they express 

the same proposition? We need to know that the two would give us the same picture if the circles 

were labeled the same. 

 

Let’s compare the unshaded diagrams where the circles are ‘men’ and ‘mortals’, on the one hand, 

and ‘non-men’ and ‘non-mortals’ on the other: 

 

 
 

When we depict ‘All men are mortals’, we blot out region 1 of the left-hand diagram. When we 

depict its contrapositive, ‘All non-mortals are non-men’, we blot out region w of the right-hand 

diagram. We want to know whether these two sentences are equivalent. They are, provided that 

blotting out region 1 and blotting out region w amount to the same thing. Do they? That is, do 

regions 1 and w contain the same objects? 

 

Let’s think this through, starting with region z. What’s in there? Those are the things that are 

outside both the non-mortal and non-men circles; that is, they’re not non-mortals and they’re not 

non-men. So they’re mortals and men, right? Things that are both mortals and men: on the left-

hand diagram, that’s the overlap between the circles. Region z and region 2 contain the same 

things. 

 

How about region y? Those things are non-men, but they’re outside the non-mortals circle, making 

them mortals. Mortals who aren’t men: they live in region 3 in the left-hand diagram. Regions y 

and 3 contain the same things. Region x has things that are both non-men and non-mortals; that is, 

they’re outside both the mortal and men circles on the left. Regions x and 4 contain the same 

things. 
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And region w? Outside the non-men circle, so they’re men. Inside the non-mortals circle, so they’re 

not mortals. Men that aren’t mortals: that’s region 1 on the left. Regions w and 1 contain the same 

things. And that means that blotting out region w and blotting out region 1 amount to the same 

thing; both are ways of ruling out the existence of the same group of objects, the men who aren’t 

mortals—or, as it turns out, the non-mortals who aren’t non-men. Same thing. 

 

Picking the main thread back up, what all this shows is that when we perform contraposition on 

universal affirmative, A sentences, we end up with new sentences that express the same 

proposition. An A sentence and its contrapositive are equivalent. We still have to ask the same 

question about E, I, and O sentences. 

 

Consider a universal negative (E): ‘No sky-divers are cowards’. This is surely true; it takes bravery 

to jump out of a plane (I wouldn’t do it). To get the contrapositive, we replace the subject, sky-

divers, with the complement of the predicate, non-cowards; and we replace the predicate, cowards, 

with the complement of the subject, non-sky-divers. The result is ‘No non-cowards are non-sky-

divers’. That’s false. You know who was a non-coward? Martin Luther King, Jr. The Reverend 

King was a courageous advocate for racial equality up to the very last day of his life.12 But, not a 

sky-diver. The contrapositive claims there’s no such thing as a non-coward who doesn’t sky-dive. 

But that ain’t so: MLK is a counterexample. In general, when you perform contraposition on an E 

sentence, you end up with a new sentence that expresses a different proposition. And as was the 

case with A and O sentences being converted, this has unpredictable effects on truth-value. You 

may move from truth to falsehood, as in this case, or from truth to truth, falsehood to falsehood, 

falsehood to truth. Contraposition changes the proposition expressed by E sentences, so you can’t 

know. 

 

Next, consider particular negative (O) sentences. These are pretty easy. ‘Some men are not priests’ 

is a good go-to example. Performing contraposition, we get ‘Some non-priests are not non-men’. 

Things that are not non-men—those are just men. So the claim being made by the contrapositive 

is that some non-priests are men. That is, there’s at least one thing that’s both a non-priest and a 

man; or, there’s at least one man who’s not a priest. I know a way to say that: ‘Some men are not 

priests’. The O sentence and its contrapositive make the same claim. Contraposition performed on 

particular negatives gives you a new sentence that is equivalent to the original. 

 

Finally, particular affirmatives—I sentences. ‘Some men are priests’ is true. So is its 

contrapositive: ‘Some non-priests are non-men’ (there’s at least one: my mom is not a man, nor 

was she ever a priest). So contraposition performed on an I works? That is, it gives you an 

equivalent sentence? Not necessarily. The two sentences might both be true, but they could be 

expressing two different true propositions. As a matter of fact, they are. When you contrapose an 

I sentence, the result is a new sentence that is not equivalent. To see why, we’ll return to Venn 

diagrams. 

 

Generically speaking, an I proposition’s diagram has an X in the area of overlap between the two 

circles. For a sentence of the form Some S are P, we would draw this: 

                                                 
12 If you need proof, watch his final speech, given the night before he was shot, in Memphis. The stirring finish: “So 

I’m happy tonight. I’m not worried about anything. I’m not fearing any man. Mine eyes have seen the glory of the 

coming of the Lord!” Just watch it; trust me. Amazing. 
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There is at least one thing (the X) that is both S and P. For the contrapositive, we draw this: 

 

 
 

There is at least one thing that is both non-P and non-S. The question is, does drawing an X in 

those two regions of overlap amount to the same thing? Let’s put the diagrams side-by-side, 

without the Xs, but with numbers and letters for the different regions: 

 

 
 

We went through this above when we were discussing the effects of contraposition on A 

propositions. Regions 1 and w contain the same things, as do regions 3 and y. But regions 2 and 4 

don’t line up with regions x and z, respectively. Rather, they’re reversed: region 2 has the same 

objects as region z, and region 4 has the same objects as region x. 

 

When we draw the picture of the straight-up I sentence, we put an X in region 2; when we draw 

the picture of its contrapositive, we put an X in region x. But region 2 and region x aren’t the same. 

So the I sentence and its contrapositive, in general, are not equivalent. Performing contraposition 

on an I sentence changes the proposition expressed, with unpredictable effects on truth-value. 

 

We can prove it with a concrete example. Let our starting I sentence be ‘Some Catholics are non-

Popes’. That’s certainly true (again, my mom: Catholic, but not Pope). The contrapositive would 

be ‘Some Popes are non-Catholics’ (the complement of non-Popes is just Popes). But that’s false. 

Being Catholic is a prerequisite for the Papacy. An I sentence and its contrapositive make different 

claims. 
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EXERCISES 

 

1. Perform conversion on the following and write down the converse. Is it equivalent to the original 

sentence? 

 

(a) Some surfers are not priests. 

(b) All Canadians are bodybuilders. 

(c) No Mexicans are fishermen. 

(d) Some Nazis are florists. 

 

2. Perform obversion on the following and write down the obverse. Is it equivalent to the original 

sentence? 

 

(a) No people are lizards. 

(b) Some politicians are criminals. 

(c) Some birds are not animals. 

(d) All Democrats are samurais. 

 

3. Perform contraposition on the following and write down the contrapositive. Is it equivalent to 

the original sentence? 

 

(a) All Philistines are Syrians. 

(b) No Africans are Europeans. 

(c) Some Americans are Irishmen. 

(d) Some Swiss are not Catholics. 

 

Inferences 

 

Earlier, we discussed how we could make inferences about the truth-values of categoricals using 

the information encoded in the Square of Opposition. For example, given the supposition that an 

A sentence expresses a true proposition, we can infer that the corresponding E sentence expresses 

a falsehood (since A and E are contraries, which can’t both be true), that the corresponding I 

sentence expresses a truth (since I is the subaltern of A, which means A’s truth guarantees that of 

I), and that the corresponding O sentence expresses a falsehood (since A and O are contradictories, 

which must have opposite truth-values). 

 

The key word in that paragraph is ‘corresponding’. The Square of Opposition tells us about the 

relationships among categoricals that correspond—which means they have the same subjects and 

predicates. If ‘All S are P’ is true, then ‘No S are P’ must be false, per the Square, since these two 

sentences have the same subject (S) and predicate (P). The square cannot license such inferences 

when the subjects and predicates do not correspond. The supposition that ‘All S are P’ is true tells 

me nothing at all about the truth-value of ‘Some A are B’; the subjects and predicates are different; 

we’re dealing with two different classes. 

 

There are occasions, however, when subjects and predicates do not correspond, but we can 

nevertheless make inferences about the truth-values of categoricals based on information about 
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others. In such cases, we need to combine our knowledge of the relationships depicted in the 

Square of Opposition with our recently acquired knowledge about the circumstances in which 

conversion, obversion, and contraposition provide us with equivalent sentences. 

 

Here is a simple example. Suppose that a sentence of the form ‘No S are P’ expresses a truth (never 

mind what ‘S’ and ‘P’ stand for; we’re thinking in the abstract here). Given that information, what 

can we say about a sentence of the form ‘Some P are S’? Well, the first is an E and the second is 

an I. According to the Square of Opposition, E and I are a contradictory pair, so they must have 

opposite truth-values. But remember, the relationships in the Square only hold for corresponding 

sentences. ‘No S are P’ and ‘Some P are S’ do not correspond; their subject and predicate class 

terms are in different spots. The Square tells us that the I sentence corresponding to ‘No S are P’—

namely, ‘Some S are P’—must be the opposite truth-value. We’ve presumed that the E sentence 

is true, so ‘Some S are P’ expresses a falsehood, according to the Square. But we wanted to know 

the truth-value of ‘Some P are S’, the sentence with the subject and predicate terms switched. Well, 

switched subject and predicate terms—that’s just the converse of ‘Some S are P’. And we know 

from our investigations that performing conversion on an I sentence always gives you another I 

sentence that’s equivalent to the first; that is, it expresses the same proposition, so it’s true or false 

in all the same circumstances as the original. That means ‘Some P are S’ must express a falsehood, 

just like its converse. 

 

Here’s how to think about the inference we just made. We were given the fact that ‘No S are P’ is 

true. We wanted to know the truth-value of ‘Some P are S’.13 We can’t compare these two directly 

using the Square of Opposition because they don’t correspond: different subject and predicate. 

But, we know that the converse of the our target sentence—‘Some S are P’—does correspond, so 

according to the Square, it must be false (since it’s contradictory to ‘No S are P’). And, since 

conversion on I sentences yields equivalent results, ‘Some P are S’ has the same truth-value as 

‘Some S are P’, so our target sentence must also be false. 

 

This is the general pattern for these sorts of multi-step inferences. You’re given information about 

a particular categorical claim’s truth-value, then asked to evaluate some other claim for truth or 

falsity. They may not correspond, so the first stage of your deliberations involves getting them to 

correspond—making the subject and predicate terms line up. You do this by performing 

conversion, obversion, and contraposition as needed, but only when those operations produce 

equivalent results: you only use conversion on E and I sentences; you only use contraposition on 

A and O sentences; and since obversion always yields an equivalent sentence, you can use it 

whenever you want. Then, once you’ve achieved correspondence, you can consult the Square of 

Opposition and complete the inference. 

 

Another example can help illustrate the method. Suppose we’re told that some sentence ‘All S are 

P’ is true. What about the sentence ‘No ~ S are ~ P’? (Remember, when we put the tildes in front 

of the letters, we’re referring to the complements of these classes.) 

 

                                                 
13 We’re getting a little sloppy here. Technically, it’s propositions, not sentences, that are true or false. Further 

complication: we’re not even talking about actual sentences here, but generic sentence-patterns, with placeholder 

letters ‘S’ and ‘P’ standing in for actual class terms. Can those sorts of things be true or false? Ugh. Let’s just agree 

not to be fussy and not to worry about it. We all understand what’s going on. 
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First, we notice that the subject and predicate terms don’t correspond. The A sentence has ‘S’ in 

subject position and ‘P’ in predicate position, while the target E sentence has ~ S and ~ P in those 

slots. We can see this misalignment clearly (and also set ourselves up more easily to think through 

the remaining steps in the inference) if we write the sentences out, one above the other (noting in 

brackets what we know about their truth-values): 

 

All S are P  [T] 

 

 

No ~ S are ~ P  [?] 

 

Focusing only on subject and predicate terms, we see that the bottom ones have tildes, the top ones 

don’t. We need to get them into correspondence. How? Well, it occurs to me that we have an 

operation that allows us to add or remove tildes, two at a time: contraposition. When we perform 

that operation, we replace the subject with the complement of the predicate (adding or removing 

one tilde) and we replace the predicate with the complement of the subject (adding or removing 

another). Now, contraposition produces equivalent sentences for A and O, but not E and I. So I 

can only perform it on the top sentence, ‘All S are P’. Doing so, I produce a contrapositive which 

expresses the same proposition, and so must also be true. We can write it down like this: 

 

All S are P  [T] 

All ~ P are ~ S  [T] 

 

 

No ~ S are ~ P  [?] 

 

The sentence we just wrote down still doesn’t align with the target sentence at the bottom, but it’s 

closer: they both have tildes in front of ‘S’ and ‘P’. Now the problem is that the ‘~ S’ and ‘~ P’ are 

in the wrong order: subject and predicate positions, respectively, in the target sentence, but the 

reverse in the sentence we just wrote down. We have an operation to fix that! It’s called conversion: 

to perform it, you switch the order of subject and predicate terms. The thing is, it only works—

that is, gives you an equivalent result—on E and I sentences. I can’t perform conversion on the A 

sentence ‘All ~ P are ~ S’ that I just wrote down at the top. But, I can perform it on the target E 

sentence at the bottom: 

 

All S are P  [T] 

All ~ P are ~ S  [T] 

 

No ~ P are ~ S  [?] 

No ~ S are ~ P  [?] 

 

I did conversion, as it were, from the bottom up. Those last two E sentences are converses of one 

another, so they express the same proposition and will have the same truth value. If I can figure 

out the truth-value of ‘No ~ P are ~ S’, then I can figure out the truth-value of my target sentence 

on the bottom; it’ll be the same. And look! I’m finally in a position to do that. The two sentences 

in the middle, ‘All ~ P are ~ S’ and ‘No ~ P are ~ S’, correspond; they have the same subject and 
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predicate. That means I can consult the Square of Opposition. I have an A sentence that’s true. 

What about the corresponding E sentence? They’re contraries, so it must be false: 

 

All S are P  [T] 

All ~ P are ~ S  [T] 

 

No ~ P are ~ S  [F] 

No ~ S are ~ P  [?] 

 

And since the target sentence at the bottom expresses the same proposition as the one directly 

above it, that final question mark can also be replaced by an ‘F’. Inference made, problem solved. 

 

Again, this is the general pattern for making these kinds of inferences: achieve correspondence by 

using the three operations, then use the information encoded in the Square of Opposition. 

 

This works most of the time, but not always. Suppose you’re told that ‘All S are P’ is true, and 

asked to infer the truth-value of ‘No P are ~ S’. We can again write them out one above the other 

and take a look: 

 

All S are P  [T] 

 

 

No P are ~ S   [?] 

 

‘S’ and ‘P’ are in the wrong order, plus ‘S’ has a tilde in front of it on the bottom but not on the 

top. The first thing that occurs to me to do is to get rid of that tilde. We have an operation for 

adding or removing one tilde at a time: obversion. I’m going to perform it on the bottom sentence. 

First, I change the quality: the universal negative (E) original becomes a universal affirmative (A). 

Then I replace the predicate with its complement: I replace ‘~ S’ with just plain ‘S’. This is the 

result: 

 

All S are P  [T] 

 

All P are S  [?] 

No P are ~ S   [?] 

 

We don’t have correspondence yet, but we’re closer with that tilde out of the way. What next? 

Well, now the problem is just that ‘S’ and ‘P’ are in the wrong order. There’s an operation for that: 

conversion. But—and here’s the rub—we can only use conversion on E and I sentences. Now that 

I did obversion on the target at the bottom, the two sentences I’m left comparing are both As. I 

can’t use conversion on an A: the result won’t be equivalent. 

 

At this point, the sensible thing to do would be to try other operations: maybe the right combination 

of obversion, contraposition, and possibly, eventually, on a different kind of sentence, conversion, 

will allow us to achieve correspondence. When making these kinds of inferences, you often have 

to try a variety of things before you get there. But I’m here to tell you, try what you might in this 
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example, as many conversions, obversions, and contrapositions as you want, in whatever order: 

you’ll never achieve correspondence. It’s impossible. 

 

So what does that mean? It means that, given the fact that ‘All S are P’ is true, you cannot make 

any inference about the truth-value of ‘No P are ~ S’. The answer to the problem is: “I don’t know.” 

Remember, this kind of thing can happen; sometimes we can’t make inferences about one 

categorical based on information about another. When we know that an I is true, for example, we 

can’t say what the truth-value of the corresponding O is; it could go either way. 

 

That’s kind of unsatisfying, though. I’m telling you that if you can’t achieve correspondence—if 

it’s impossible—that you can’t make an inference. But how do you know that you can’t achieve 

correspondence? Maybe, as you were laboring over the problem, you just didn’t stumble on the 

right combination of operations in the right order. How do we know for sure that an inference can’t 

be made? As a matter of fact, the one step that we took in this problem puts us in a position to 

know just that. Compare ‘All S are P’ with the obverse of the target sentence, ‘All P are S’. What’s 

the relationship between those? One is the converse of the other. We’re given a true A sentence, 

and asked to make an inference about the truth-value of a sentence equivalent to its converse. But 

performing conversion on an A, as we established at length above, gives you a new sentence that 

expresses a different proposition. And this has unpredictable effects on truth-value: sometimes one 

goes from truth to falsity; other times from truth to truth, and so on. In this case, we know that we 

can’t know the truth-value of the target sentence, because it’s equivalent to the result of perform 

conversion on a universal affirmative, and the effects of that operation on truth-value are 

unpredictable. 

 

In general, you can know that the answer to one of these problems is “I don’t know” if you can 

use the operations to get into a position where you’re comparing a sentence with its converse or 

contrapositive when those operations don’t work for the types of sentences you have. We saw this 

for an A and its converse. Similarly, if you have an E sentence of known truth-value, and your 

target sentence is equivalent to its contrapositive, you know the answer is “I don’t know,” because 

contraposition performed on E sentences has unpredictable results on truth-value. Same goes for I 

and conversion, O and contraposition. 

 

 

EXERCISES 

 

1. Suppose ‘All S are P’ is true. Determine the truth-values of the following (if possible). 

 

(a) No S are ~ P 

(b) All ~S are ~ P 

(c) No ~ P are S 

(d) Some ~ P are S 

(e) Some ~ S are not ~ P 

 

2. Suppose ‘No S are P’ is true. Determine the truth-values of the following (if possible). 

 

(a) Some ~ P are not ~ S 
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(b) All ~ S are ~ P 

(c) No ~ S are ~ P 

(d) Some ~ P are S 

(e) All ~ P are ~ S 

 

3. Suppose ‘Some S are P’ is true. Determine the truth-values of the following (if possible). 

 

(a) All S are ~ P 

(b) Some S are not ~ P 

(c) No P are S 

(d) Some P are ~ S 

(e) No S are ~ P 

 

4. Suppose ‘Some S are not P’ is true. Determine the truth-values of the following (if possible). 

 

(a) No S are ~ P 

(b) Some S are ~ P 

(c) No ~ S are P 

(d) No ~ P are S 

(e) Some P are S 

 

 

V.  Problems with the Square of Opposition 

 

The Square of Opposition is an extremely useful tool: it neatly summarizes, in graphical form, 

everything we know about the relationships among the four types of categorical proposition.  

 

Except, actually, we don’t know those things. I’m sorry, but when I first presented the Square of 

Opposition and made the case for the various relationships it depicts, I was leading you down the 

proverbial primrose path. What appeared easy is in fact not so simple as it seems. Some of the 

relationships in the Square break down under certain circumstances and force us to do some hard 

thinking about how to proceed. It’s time to explore the “steep and thorny way” that opens before 

us when we dig a bit deeper into problems that can arise for the Square of Opposition. 
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Existential import 
 

To explain what these problems are, we need the concept of existential import (E.I. for short). E.I. 

is a property that propositions may or may not have. A proposition has existential import when its 

truth implies the existence of something. Because of what we decided to mean when we use the 

word ‘some’—namely, ‘there is at least one’—the particular propositions I and O clearly have E.I. 

For ‘Some sailors are not pirates’ to be true, there has to exist at least one sailor who is not a pirate. 

Again, that’s just a consequence of what we mean by ‘some’. 

 

In addition, given the relationships that are said to hold by the Square of Opposition, the universal 

propositions A and E also have existential import. This is because the particular propositions are 

subalterns. The truth of a universal proposition implies the truth of a particular one: if an A is true, 

then the corresponding I must be; if an E is true, then the corresponding O must be. So since the 

truth of universals implies the truth of particulars, and particulars have E.I., then universals imply 

the existence of something as well: they have existential import, too. 

 

Problems for the Square 

 

OK, all four of the categorical propositions have existential import. What’s the big deal? Well, this 

fact leads to problems. Consider the proposition that all C.H.U.D.s are Republicans; also, consider 

the proposition that some C.H.U.D.s are not Republicans. Both of these propositions are false. 

That’s because both of them imply the existence of things—namely, C.H.U.D.s—that don’t exist. 

(‘C.H.U.D.’ stands for ‘Cannibalistic Humanoid Underground Dweller’. They’re the titular scary 

monsters of a silly horror movie from the ’80s. They’re not real.) ‘Some C.H.U.D.s are not 

Republicans’ claims that there exists at least one C.H.U.D. who’s not a Republican; but that’s not 
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the case, since there are no C.H.U.D.s. ‘All C.H.U.D.s are Republicans’ is also false: if it were 

true, its subaltern ‘Some C.H.U.D.s are Republicans’ would have to be true; but it can’t be, because 

it claims that there’s such a thing as a C.H.U.D. (who’s a Republican). 

 

Bottom line: A and O propositions about C.H.U.D.s both turn out false. This is a problem for the 

Square of Opposition because A and O are supposed to be a contradictory pair; they’re supposed 

to have opposite truth-values. 

 

It gets worse. Any time your subject class is empty—that is, like ‘C.H.U.D.s’, it doesn’t have any 

members—all four of the categorical propositions turn out false. This is because, as we saw, all 

four have existential import. But if E and I are both false, that’s a problem: they’re supposed to be 

contradictory. If I and O are both false, that’s a problem: they’re supposed to be subcontraries. 

When we talk about empty subject classes, the relationships depicted in the Square cease to hold. 

 

Solution? 

 

So the problems are caused by empty classes. We can fix that. We’re building our own logic from 

the ground up here. Step one in that process is to tame natural language. The fact that natural 

language contains terms that don’t refer to anything real seems to be one of the ways in which it 

is unruly, in need of being tamed. Why not simply restrict ourselves to class terms that actually 

refer to things, rule out empty classes? Then the Square is saved. 

 

While tempting, this solution goes too far. The fact is, we make categorical claims using empty 

(or at least possibly empty) class terms all the time. If we ruled these out, our ability to evaluate 

arguments containing such claims would be lost, and our logic would be impoverished.  

 

One field in which logic is indispensable is mathematics. Mathematicians need precise language 

to prove interesting claims. But some of the most interesting claims in mathematics involve empty 

classes. For instance, in number theory, one can prove that there is no largest prime number—they 

go on forever. In other words, the term ‘largest prime number’ refers to an empty class. If our logic 

ruled out empty class terms, mathematicians couldn’t use it. But mathematicians are some of our 

best customers! 

 

Also, physicists. Before its existence was confirmed in 2013, they made various claims about a 

fundamental particle called the Higgs boson. “Higgs bosons have zero spin,” they might say, 

making a universal affirmative claim about these particles. But before 2013, they didn’t even know 

if such particles existed. IF they existed, they would have zero spin (and a certain mass, etc.); the 

equations predicted as much. But those equations were based on assumptions that may not have 

been true, and so there may not have been any such particle. Nevertheless, it was completely 

appropriate to make claims about it, despite the fact that ‘Higgs boson’ might be an empty term.  

 

We make universal claims in everyday life that don’t commit us to the existence of things. 

Consider the possible admonition of a particularly harsh military leader: Deserters will be shot. 

This is a universal affirmative claim. But it doesn’t commit to the existence of deserters; in fact, 

it’s very purpose is to ensure that the class remains empty! 
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So, empty classes have their uses, and we don’t want to commit ourselves to the existence of things 

every time we assert a universal claim. Ruling out empty classes from our logic goes too far to 

save the Square of Opposition. We need an alternative solution to our problems. 

 

Boolean Solution 

 

Advocated by the English logician George Boole in the 19th Century, our solution to the problems 

raised will be to abandon the assumption that universal propositions (A and E) have existential 

import, allow empty classes, and accept the consequences. Those consequences, alas, are quite 

dire for the traditional Square of Opposition. Many of the relationships it depicts do not hold when 

subject classes are empty. 

 

First, the particular propositions (I and O) are no longer subcontraries. Since they start with the 

word ‘some’, they have existential import. When their subject classes are empty, as is now allowed, 

they both turn out false. Subcontraries can’t both be false, but I and O can both be false when we 

allow empty classes. 

 

Next, the particular propositions are no longer subalterns of their corresponding universals (A and 

E). As we said, the universals no longer have existential import—they no longer imply the 

existence of anything—and so their truth cannot imply the truths of particular propositions, which 

do continue to have E.I. 

 

The only two relationships left on the Square now are contradictoriness—between A and O, E and 

I—and contrariety between the two universals. And these are in conflict when we have empty 

subject classes. In such cases, both I and O are false, as we’ve said. It follows that their 

contradictories, A and E, must be true. But, A and E are supposed to be a contrary pair; they can’t 

both be true. So we can’t keep both contrariety and contradictoriness; one must go. We will keep 

contradictoriness. To do otherwise would be to abondon the plain meanings of the words we’re 

using. There’s a reason I introduced this relationship first: it’s the easiest to understand. If you 

want to contradict my universal affirmative claim that all sailors are pirates, you claim that some 

of them aren’t; A and O are clearly contradictory. As are E and I: if you want to contradict my 

claim that no surfers are priests, you show me one who is. So we eliminate contrariety: it is 

possible, in cases where the subject class is empty, for both A and E propositions to be true. 

 

What we’re left with after making these revisions is no longer a square, but an X. All that remains 

is contradictoriness: 
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And our solution is not without awkwardness. In cases where the subject class is empty, both 

particular propositions (I and O) are false; their universal contradictories (E and A), then, are true 

in those circumstances. This is strange. Both of these sentences express truths: ‘All C.H.U.D.s are 

Republicans’ and ‘No C.H.U.D.s are Republicans’. That’s a tough pill to swallow, but swallow it 

we must, given the considerations above. We can make it a bit easier to swallow if we say that 

they’re true, but vacuously or trivially. That is, they’re true, but not in a way that tells you anything 

about how things actually are in the world (the world is, after all and thankfully, C.H.U.D.-free).  

 

That we would end up choosing this interpretation of the categoricals, rather than the one under 

which universal propositions had existential import, was foreshadowed earlier, when we first 

introduced the four types of categorical proposition and talked about how to diagram them. We 

chose diagrams for A and E that did not imply the existence of anything. Recall that our way of 

indicating existence in Venn diagrams is to draw an X. So for a particular affirmative—some 

surfers are priests, say—we drew this picture (with the X being the one surfing priest we’re 

committed to the existence of): 
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The diagrams for the universals (A and E), though, had no Xs in them, only shading; they don’t 

commit us to the existence of anything. If we were going to maintain the existential import of A 

and E, we would’ve drawn different diagrams. For the universal affirmative—all logicians are 

jerks, say—we’d shade out the portion of the left-hand circle that doesn’t overlap the right, to 

indicate that there’s no such thing as a logician who’s not a jerk. But we would also put an X in 

the middle region, to indicate that there is at least one logician who is (existential import): 

 

 
 

And for the universal negative—no women are priests, say—we would shade out the middle 

region, to indicate there’s nothing that’s both a woman and a priest. But we would also put an X 

in the left-hand circle, to indicate that there’s at least one woman who’s not a priest: 

 

 
 

This interpretation of the universal propositions, according to which they have existential import, 

is often called the “Aristotelian” interpretation (as opposed to our “Boolean” interpretation, 

according to which they do not).14 Which interpretation one adopts makes a difference. There are 

some arguments that the two interpretations evaluate differently: on the Aristotelian view, they are 

valid, but on the Boolean view, they are not. We will stick to the Boolean interpretation of the 

universals, according to which they do not have existential import. 

 

 

 

 

 

                                                 
14 It is not clear, however, that it is correct to attribute this view to Aristotle. While he clearly did believe that universal 

affirmative (A) propositions had existential import, it’s not clear that he thought the same about universal negatives. 

His rendering of the particular negative (O) was ‘Not all S are P’, which could be (trivially, vacuously) true when S 

is empty. In that case, O’s being the subaltern of E does not force us to attribute Existential Import to the latter. For 

discussion, see Parsons, Terence, "The Traditional Square of Opposition", The Stanford Encyclopedia of Philosophy 

(Summer 2015 Edition), Edward N. Zalta (ed.), URL = <http://plato.stanford.edu/archives/sum2015/entries/square/>. 
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VI.  Categorical Syllogisms 

 

As we’ve said, Aristotelian Logic limits itself to evaluating arguments all of whose propositions—

premises and conclusion—are categorical. There is a further restriction: Aristotelian Logic only 

evaluates categorical syllogisms. These are a special kind of argument, meeting the following 

conditions: 

 

A categorical syllogism is a deductive argument consisting of three categorical 

propositions (two premises and a conclusion); collectively, these three propositions feature 

exactly three classes; each of the three classes occurs in exactly two of the propositions. 

 

That’s a mouthful, but an example will make it clear. Here is a (silly) categorical syllogism: 

 

All chipmunks are Republicans. 

Some Republicans are golfers. 

/ Some chipmunks are golfers. 

 

This argument meets the conditions in the definition: it has three propositions; there are exactly 

three classes involved (chipmunks, Republicans, and golfers); and each of the three classes occurs 

in exactly two of the propositions (check it and see). 

 

There is some special terminology for the class terms and premises in categorical syllogisms. Each 

of the three class terms has a special designation. The so-called major term is the term that appears 

in predicate position in the conclusion; in our silly example, that’s ‘golfers’. The minor term is the 

term that appears in subject position in the conclusion; in our example, that’s ‘chipmunks’. The 

middle term is the other one, the one that appears in each of the premises; in our example, it’s 

‘Republicans’. 

 

The premises have special designations as well. The major premise is the one that has the major 

term in it; in our example, that’s ‘Some Republicans are golfers’. The minor premise is the other 

one, the one featuring the minor term; in our example, it’s ‘All chipmunks are Republicans’.  

 

Final restriction: categorical syllogisms must be written in standard form. This means listing the 

premises in the correct order, with the major premise first and the minor premise second. If you 

look at our silly example, you’ll note that it’s not in standard form. To fix it, we need to reverse 

the order of the premises: 

 

Some Republicans are golfers. 

All chipmunks are Republicans. 

/ Some chipmunks are golfers. 

 

An old concern may arise again at this point: in restricting itself to such a limited class of 

arguments, doesn’t Aristotelian Logic run the risk of not being able to evaluate lots of real-life 

arguments that we care about? The response to this concern remains the same: while most (almost 

all) real-life arguments are not presented as standard form categorical syllogisms, a surprising 

number of them can be translated into that form. Arguments with more than two premises, for 
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example, can be rewritten as chains of two-premise sub-arguments. As was the case when we 

raised this concern earlier, we will set aside the messy details of exactly how this is accomplished 

in particular cases. 

 

Logical Form 

 

As we said at the outset of our exploration of deductive logic, there are three things such a logic 

must do: (1) tame natural language; (2) precisely define logical form; and (3) develop a way to test 

logical forms for validity. Until now, we’ve been concerned with the first step. It’s (finally) time 

to proceed to the second and third. 

 

The logical form of a categorical syllogism is determined by two features of the argument: its 

mood and its figure. First, mood. The mood of a syllogism is determined by the types of categorical 

propositions contained in the argument, and the order in which they occur. To determine the mood, 

put the argument into standard form, and then simply list the types of categoricals (A, E, I, O) 

featured in the order they occur. Let’s do this with our silly example: 

 

Some Republicans are golfers. 

All chipmunks are Republicans. 

/ Some chipmunks are golfers. 

 

From top to bottom, we have an I, an A, and an I. So the mood of our argument is IAI. It’s that 

easy. It turns out that there are 64 possible moods—64 ways of combining A, E, I, and O into 

unique three-letter combinations, from AAA to OOO and everything in between. 

 

The other aspect of logical form is the argument’s figure. The figure of a categorical syllogism is 

determined by the arrangement of its terms. Given the restrictions of our definition, there are four 

different possibilities for standard form syllogisms. We will list them schematically, using these 

conventions: let ‘S’ stand for the minor term, ‘P’ stand for the major term, and ‘M’ stand for the 

middle term. Here are the four figures: 

 

(i)     MP  (ii)     PM  (iii)     MP  (iv)     PM 

         SM            SM             MS             MS 

         SP            SP             SP             SP 

 

Again, the only thing that determines figure is the arrangement of terms—whether they appear in 

subject or predicate position in their premises. In our schemata, that the letter is listed first indicates 

that the term appears in subject position; that it appears second indicates that it’s in predicate 

position. So, in the first figure, in the major premise (the first one), the middle term (M) is in 

subject position and the major term (P) is in predicate position. Notice that for all four figures, the 

subject and predicate of the conclusion remains the same: this is because, by definition, the minor 

term (S) is the subject of the conclusion and the major term (P) its predicate.  

 

Returning to our silly example, we can determine its figure: 
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Some Republicans are golfers. 

All chipmunks are Republicans. 

/ Some chipmunks are golfers. 

 

Perhaps the easiest thing to do is focus on the middle term, the one that appears in each of the 

premises—in this case, ‘Republicans’. It occurs in subject position in the major premise, then 

predicate position in the minor premise. Scanning the four figures, I just look for the one that has 

‘M’ listed in first position on the top, then second position in the middle. That’s the first figure. 

 

So the mood of our sample argument is IAI, and it’s in the first figure. Logical form is just the 

mood and figure, and conventionally, we list logical forms like this: IAI-1 (the mood, a dash, then 

a number between 1 and 4 for the figure). 

 

There are 4 figures and 64 moods. That gives us 256 possible logical forms. It turns out that only 

15 of these are valid. We need a way to test them. It is to that task we now turn. 

 

The Venn Diagram Test for Validity 

 

To test syllogistic forms for validity, we proceed in three steps: 

 

1. Draw three overlapping circles, like this: 

 

 
 

That gives us one circle for each of the three terms in the syllogism: minor (S), major (P), 

and middle (M). 

 

2. Depict the assertions made by the premises of the syllogism on this diagram, using 

shading and Xs as appropriate, depicting the individual A, E, I, or O propositions in the 

usual way: 
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Each of the premises will be a proposition concerning only two of the three classes (S, P, 

and M). The major premise will concern M and P (in some order); the minor premise will 

concern M and S (in some order). How the circles will be labeled (with S, M, P) will depend 

on these particulars. 

 

3. After the premises have been depicted on the three-circle diagram, we look at the 

finished product and ask, “Does this picture entail the truth of the conclusion?” If it does, 

the form is valid; if it does not, it is invalid. 

 

In the course of running the test, we will keep two things in mind—one rule of thumb and one 

convention: 

 

Rule of Thumb: In step 2, depict universal (A and E) premises before particular (I and O) 

ones (if there’s a choice). 

 

Convention: In cases of indeterminacy, draw Xs straddling boundary lines. 

 

We need to explain what “indeterminacy” amounts to; we will in a moment. For now, to make all 

this more clear, we should run through some examples. 

 

Let’s start at the beginning (alpha-numerically): AAA-1. We want to test this syllogistic form for 

validity. What does an argument of this form look like, schematically? Well, all three of its 

propositions are universal affirmatives, so they’re all of the form All __ are __. We have: 

 

All __ are __ 

All __ are __ 

/ All __ are __ 

 

That’s what the mood (AAA) tells us. We have to figure out how to fill in the blanks with S, P, 

and M. The figure tells us how to do that. AAA-1: so, first figure. That looks like this: 
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(i)     MP   

         SM   

         SP 

 

So AAA-1 can be schematically rendered thus: 

 

All M are P. 

All S are M. 

/ All S are P. 

 

To test this form for validity, we start with step 1, and draw three circles: 

 

 
 

In step 2, we depict the premises on this diagram. (We’re supposed to keep in mind the rule of 

thumb that, given a choice, we should depict universal premises before particular ones, but since 

both of the premises are universals, this rule does not apply to this case.) We can start with the 

major premise: All M are P. On a regular two-circle Venn diagram, that would look like this: 

 

 
 

The trick is to transfer this two-circle diagram onto the three-circle one. In doing so, we keep in 

mind that all the parts of M that are outside of P must be shaded. That gives us this: 
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Note that in the course of shading out the necessary regions of M, we shaded out part of S. That’s 

OK. Those members of the S class are Ms that aren’t Ps; there’s no such thing, so they have to go. 

 

Next, we depict the minor premise: All S are M. With two circles, that would look like this: 

 

 
 

Transferring that onto the three circle diagram means shading all the parts of S outside of M: 

 

 
Step 2 is complete: we have depicted the assertions made by the premises. In step 3 we ask whether 

this diagram guarantees the truth of the conclusion. Well, our conclusion is All S are P. In a two-

circle diagram, that looks like this: 
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Does our three-circle diagram guarantee the truth of All S are P? Focusing on the S and P circles, 

and comparing the two diagrams, there’s a bit of a difference: part of the area of overlap between 

S and P is shaded out in our three-circle diagram, but it isn’t in the two-circle depiction. But that 

doesn’t affect our judgment about whether the diagram guarantees All S are P. Remember, this 

can be thought of as a claim that a certain kind of thing doesn’t exist—an S that’s outside the P 

circle.If there are any Ss (and there may not be), they will also be Ps. Our three-circle diagram 

does in fact guarantee this. There can’t be an S that’s not a P; those areas are shaded out. Any S 

you find will also be a P; it’ll be in that little region in the center where all three circles overlap.  

 

So, since the answer to our question is “yes”, the syllogistic form AAA-1 is valid. Trivial fact: all 

the valid syllogistic forms were given mnemonic nicknames in the Middle Ages to help students 

remember them. AAA-1 is called “Barbara”. No really. All the letters in the name had some 

meaning: the vowels indicate the mood (AAA); the other letters stand for features of the form that 

go beyond our brief investigation into Aristotelian Logic. 

 

We should reflect for a moment on why this method works. We draw a picture that depicts the 

assertions made by the premises of the argument. Then we ask whether that picture guarantees the 

conclusion. This should sound familiar. We’re testing for validity, and by definition, an argument 

is valid just in case its premises guarantee its conclusion; that is, IF the premises are true, then the 

conclusion must also be true. Our method mirrors the definition. When we depict the premises on 

the three-circle diagram, we’re drawing a picture of what it looks like for the premises to be true. 

Then we ask, about this picture—which shows a world in which the premises are true—whether it 

forces us to accept the conclusion—whether it depicts a world in which the conclusion must be 

true. If it does, the argument is valid; if it doesn’t, then it isn’t. The method follows directly from 

the definition of validity. 

 

To further illustrate the method, we should do some more examples. AII-3 is a useful one. The 

mood tells us it’s going to look like this: 

 

All __ are __ 

Some __ are __ 

/ Some __ are __ 

 

And we’re in the third figure: 

 

(iii)     MP   

           MS   

           SP 
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So we fill in the blanks to get the schematic form: 

 

All M are P 

Some M are S 

/ Some S are P 

 

We start the test of this form with the blank three-circle diagram: 

 

 
 

Step 2: depict the premises. And here, our rule of thumb applies: depict universals before 

particulars. The major premise is a universal (A) proposition; the minor premise is a particular (I). 

So we depict the major premise first. That’s All M are P. We did this already. Recall that Barbara 

has the same major premise. So depicting that on the diagram gives us this: 

 

 
 

Next, the minor premise: Some M are S. Recall, with particular propositions, we depict them using 

an X to indicate the thing said to exist. This proposition asserts that there is at least one thing that 

is both M and S: 
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We need to transfer this to the three-circle diagram. We need an X that is in both the M and S 

circles. If we look at the area of overlap between the two, we see that part of it has been shaded 

out as the result of depicting the major premise, so there’s only one place for the X to go: 

 

 
 

Step 2 is complete: the premises are depicted. So we proceed to step 3 and ask, “Does this picture 

guarantee the conclusion?” The conclusion is Some S are P; that’s an assertion that there is at least 

one thing that is both S and P. Is there? Yes! That X that we drew in the course of depicting the 

minor premise is in the sweet spot—the area of overlap between S and P. It guarantees the 

conclusion. The argument is valid. (If you’re curious, its mnemonic nickname is ‘Datisi’. Weird, 

I know; it was the Middle Ages.) 

 

That’s another successful use of the Venn diagram test for validity, but I want to go back a revisit 

some of it. I want us to reflect on why we have the rule of thumb to depict universal premises 

before particular ones. Remember, we had the universal major premise All M are P and the 

particular minor premise Some M are S. The rule of thumb had us depict them in that order. Why? 

What would have happened had we done things the other way around? We would have started 

with a blank three-circle diagram and had to depict Some M are S on it. That means an X in the 

area of overlap between M and S. That area, though, is divided into two sub-regions (labeled ‘a’ 

and ‘b’): 
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Where do I put my X—in region a or b? Notice, it makes a difference: if I put the X is region a, 

then it’s outside the P circle; if I put it in region b, then it’s inside the P circle. The question is: “Is 

this thing that the minor premise says exists a P or not a P?” I’m depicting a premise that only 

asserts Some M are S. That premise says nothing about P. It’s silent on our question; it gives us 

no guidance about how to choose between regions a and b. What to do? This is one of the cases of 

“indeterminacy” that we mentioned earlier when we introduced a convention to keep in mind when 

running the test for validity: In cases of indeterminacy, draw Xs straddling boundary lines. We 

don’t have any way of choosing between regions a and b, so when we draw our X, we split the 

difference: 

 

 
 

This drawing indicates that there’s an X in there somewhere, either inside or outside the P circle, 

we don’t know which.  

 

And now we see the reason for our rule of thumb—depict universals before particulars. Because 

if we proceed to depict the universal premise All M are P, we shade thus: 
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The shading erased half our X. That is, it resolved our question of whether or not the X should go 

in the P circle: it should. So now we have to go back an erase the half-an-X that’s left and re-draw 

the X in that center region and end up with the finished diagram we arrived at earlier: 

 

 
 

We would’ve saved ourselves the trouble had we just followed the rule of thumb to begin with and 

depicted the universal before the particular—shading before the X. That’s the utility of the rule: 

sometimes it removes indeterminacy that would otherwise be present. 

 

One more example to illustrate how this method works. Let’s test EOI-1. Noting that in the first 

figure the middle term is first subject and then predicate, we can quickly fill in the schema: 

 

No M are P 

Some S are not M. 

/ Some S are P. 

 

Following the rule of thumb, we depict the universal (E) premise first. No M are P asserts that 

there is nothing that is in both of those classes. The area of overlap between them is empty. With 

two circles, we have this: 
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Transferring this onto the three-circle diagram, we shade out all the area of overlap between the 

M and P circles (clipping off part of S along the way): 

 

 
 

Next, the particular (O) premise: Some S are not M. This asserts the existence of something—

namely, a thing that is an S but not an M. We need an X in the S circle that outside the M circle: 

 

 
 

Moving to the three-circle diagram, though, things get messy. The area of S that’s outside of M is 

divided into two sub-regions (labeled ‘a’ and ‘b’): 
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We need an X somewhere in there, but do we put it in region a or region b? It makes a difference: 

if we put it in region b, it is a P; if we put it in region a, it is not. This is the same problem we faced 

before. We’re depicting a premise—Some S are not M—that is silent on the question of whether 

or not the thing is a P. Indeterminacy. We can’t decide between a and b, so we split the difference: 

 

 
 

That X may be inside of P, or it may not; we don’t know. This is a case in which we followed the 

rule of thumb, depicting the universal premise before the particular one, but it didn’t have the 

benefit that it had when we tested AII-3: it didn’t remove indeterminacy. That can happen. The 

rule of thumb is in place because it sometimes removes indeterminacy; it doesn’t always work, 

though. 

 

So now that we’ve depicted the premises, we ask whether they guarantee the conclusion. Is the 

world depicted in our diagram one in which the conclusion must be true? The conclusion is Some 

S are P: it asserts that there is at least one thing that is both S and P. Does our picture have such a 

thing? There’s an X in the picture. Does it fit the bill? Is it both S and P? Well, uh… Maybe? That 

X may be inside of the area of overlap between S and P; then again, it may not be. 

 

Oy. What do we say? It’s tempting to say this: we don’t know whether the argument is valid or 

not; it depends on where that X really is. But that’s not the correct response. Remember, we’re 
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testing for validity—for whether or not the premises guarantee the conclusion. We can answer 

that question: they don’t. For a guarantee, we would need an X in our picture that is definitely 

inside that middle region. We don’t have such an X. These premises leave open the possibility that 

the conclusion is true; they don’t rule it out. But that’s not enough for validity. For an argument to 

be valid, the premises must necessitate the conclusion, force it on us. These do not. The form EOI-

1 is not valid.15 

 

 

EXERCISES 

 

1. Identify the logical form of the following arguments. 

 

(a) Because some Wisconsinites are criminals and all criminals are scoundrels, it follows 

that some scoundrels are Wisconsinites. 

 

(b) No surfers are priests, because all priests are men and some surfers are not men. 

 

(c) Some authors are feminists, since some women are authors and some women are 

feminists. 

 

(d) All mosquitoes are potential carriers of disease; therefore some mosquitoes are a 

menace to society, since all potential carriers of disease are a menace to society. 

 

(e) Because some neo-Nazis are bloggers, some neo-Nazis are not geniuses, since no 

geniuses are bloggers. 

 

2. Test the following syllogistic forms for validity. 

 

(a) EAE-2 

(b) EAE-3 

(c) OAO-3 

(d) EIO-4 

(e) AOO-4 

(f) IAI-1 

(g) AII-1 

 

3. Test the following arguments for validity. 

 

(a) Some pirates are mercenaries; hence, some sailors are pirates, because all sailors are 

mercenaries. 

 

(b) Some women are not nuns, but all nuns are sweethearts; it follows that some women 

are not sweethearts. 

 

                                                 
15 Sad but true: the invalid syllogistic forms do not have mnemonic nicknames.  
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(c) Some Republicans are not politicians, for some Republicans are not Christians, and 

some Christians are not politicians. 

 

4. Test the arguments in Exercise 1 for validity. 



 

 

CHAPTER 4 

 

Deductive Logic II: Sentential Logic 
 

 

 

 

 

 

 

 

 

 

I.  Why Another Deductive Logic? 

 

Aristotle’s logic was great. It had a two-plus millennium run as the only game in town. As recently 

as the late 18th century (remember, Aristotle did his work in the 4th century BCE), the great German 

philosopher Immanuel Kant remarked that “since the time of Aristotle [logic] has not had to go a 

single step backwards… [and] it has also been unable to take a single step forward, and therefore 

seems to all appearance to be finished and complete.”1 

 

That may have been the appearance in Kant’s time, but only because of an accident of history. In 

his own time, in ancient Greece, Aristotle’s system had a rival—the logic of the Stoic school, 

culminating in the work of Chrysippus. Recall, for Aristotle, the fundamental logical unit was the 

class; and since terms pick out classes, his logic is often referred to as a “term logic”. For the 

Stoics, the fundamental logical unit was the proposition; since sentences pick out propositions, we 

could call this a “sentential logic”. These two approaches to logic were developed independently. 

Because of the vicissitudes of intellectual history (more later commentators promoted Aristotelian 

Logic, original writings from Chrysippus didn’t survive, etc.), it turned out that Aristotle’s 

approach was the one passed on to future generations, while the Stoic approach lay dormant. 

However, in the 19th century, thanks to work by logicians like George Boole (and many others), 

the propositional approach was revived and developed into a formal system. 

 

                                                 
1 Kant, I. 1997. Critique of Pure Reason. Guyer, P. and Wood, A. (tr.). Cambridge: Cambridge University Press. p. 

106. 
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Why is this alternative approach valuable? One of the concerns we had when we were introducing 

Aristotelian Logic was that, because of the restriction to categorical propositions, we would be 

limited in the number and variety of actual arguments we could evaluate. We brushed aside these 

concerns with a (somewhat vague) promise that, as a matter of fact, lots of sentences that were not 

standard form categoricals could be translated into that form. Furthermore, the restriction to 

categorical syllogisms was similarly unproblematic (we assured ourselves), because lots of 

arguments that are not standard form syllogisms could be rendered as (possibly a series of) such 

arguments. 

 

These assurances are true in a large number of cases. But there are some very simple arguments 

that resist translation into strict Aristotelian form, and for which we would like to have a simple 

method for judging them valid. Here is one example: 

 

Either Clinton will win the election or Trump will win the election. 

Trump will not win the election. 

/ Clinton will win the election. 

 

None of the sentences in this argument is in standard form. And while the argument has two 

premises and a conclusion, it is not a categorical syllogism. Could we translate it into that form? 

Well, we can make some progress on the second premise and the conclusion, noting, as we did in 

Chapter 3, that there’s a simple trick for transforming sentences with singular terms (names like 

‘Clinton’ and ‘Trump’) into categoricals: let those names be class terms referring to the unit class 

containing the person they refer to, then render the sentences as universasl. So the conclusion, 

‘Clinton will win the election’ can be rewritten in standard form as ‘All Clintons are election-

winners’, where ‘Clintons’ refers to the unit class containing only Hillary Clinton. Similarly, 

‘Trump will not win the election’ could be rewritten as a universal negative: ‘No Trumps are 

election-winners’. The first premise, however, presents some difficulty: how do I render an 

either/or claim as a categorical? What are my two classes? Well, election-winners is still in the 

mix, apparently. But what to do with Clinton and Trump? Here’s an idea: stick them together into 

the same class (they’re not gonna like this), a class containing just the two of them. Let’s call the 

class ‘candidates’. Then this universal affirmative plausibly captures the meaning of the original 

premise: ‘All election-winners are candidates’. So now we have this: 

 

All election-winners are candidates. 

No Trumps are election-winners. 

/ All Clintons are election-winners. 

 

At least all the propositions are now categoricals. The problem is, this is not a categorical 

syllogism. Those are supposed to involve exactly three classes; this argument has four—Clintons, 

Trumps, election-winners, and candidates. True, candidates is just a composite class made by 

combining Clintons and Trumps, so you can make a case that there are really only three classes 

here. But, in a categorical syllogism, each of the class terms in supposed to occur exactly twice. 

‘Election-winners’ occurs in all three, and I don’t see how I can eliminate one of those occurrences. 

 

Ugh. This is giving me a headache. It shouldn’t be this hard to analyze this argument. You don’t 

have to be a logician (or a logic student who’s made it through three chapters of this book) to 
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recognize that the Trump/Clinton argument is a valid one. Pick a random person off the street, 

show them that argument, and ask them if it’s any good. They’ll say it is. It’s easy for regular 

people to make such a judgment; shouldn’t it be easy for a logic to make that judgment, too? 

Aristotle’s logic doesn’t seem to be up to the task. We need an alternative approach. 

 

This particular example is exactly the kind of argument that begs for a proposition-focused logic, 

as opposed to a class-focused logic like Aristotle’s. If we take whole propositions as our 

fundamental logical unit, we can see that the form of this argument—the thing, remember, that 

determines its validity—is something like this: 

 

Either p or q 

Not q 

/ p 

 

In this schema, ‘p’ stands for the proposition that Clinton will win and ‘q’ for the proposition that 

Trump will win. It’s easy to see that this is a valid form.2 This is the advantage of switching to a 

sentential, rather than a term, logic. It makes it easy to analyze this and many other argument 

forms. 

 

In this chapter, we will discuss the basics of the proposition-centered approach to deductive 

logic—Sentential Logic. As was the case with Aristotle’s logic, Sentential Logic must accomplish 

three tasks: 

 

1.  Tame natural language. 

2.  Precisely define logical form. 

3.  Develop a way to test logical forms for validity. 

 

The approach to the first task—taming natural language—will differ substantially from Aristotle’s. 

Whereas Aristotelian Logic worked within a well-behaved portion of natural language—the 

sentences expressing categorical propositions—Sentential Logic steps outside of natural language 

entirely, constructing an artificial language and only evaluating arguments expressed in its terms. 

This move, of course, raises the concern we had about the applicability to everyday arguments 

even more acutely: what good is a logic if it doesn’t evaluate English arguments at all? What we 

must show to alleviate this concern is that there is a systematic relationship between our artificial 

language and our natural one (English); we must show how to translate between the two—and how 

translating from English into the artificial language results in the removal of imprecision and 

unruliness, the taming of natural language. 

 

We will call our artificial language “SL,” short for ‘Sentential Logic’. In constructing a language, 

we must specify its syntax and its semantics. The syntax of a language is the rules governing what 

                                                 
2 This form is often called the “Disjunctive Syllogism”. Notice that the word ‘syllogism’ is used there. By the Middle 

Ages, Stoic Logic hadn’t disappeared entirely. Rather, bits of it were simply added on the Aristotelian system. So, it 

was traditional (and still is in many logic textbooks), when discussing Aristotelian Logic, to present this form, along 

with some others, as additional valid forms (supplementing Barbara, Datisi, and the rest). But this conflation of the 

two traditions obscures the fundamental difference between a class-centered approach to logic and one focused on 

propositions. These should be kept distinct. 
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counts as a well-formed construction within that language; that is, syntax is the language’s 

grammar. Syntax is what tells me that ‘What a handsome poodle you have there.’ is a well-formed 

English construction, while ‘Poodle a handsome there you what have.’ is not. The semantics of a 

language is an account of the meanings of its well-formed bits. If you know what a sentence means, 

then you know what it takes for it to express a truth or a falsehood. So semantics tells you under 

what conditions a given proposition is true or false.3 Our discussion of the semantics of SL will 

reveal its relationship to English and tell us how to translate between the two languages. 

 

 

II.  Syntax of SL 
 

First, we cover syntax. This discussion will give us some clues as to the relationship between SL 

and English, but a full accounting of that relationship will have to wait, as we said, for the 

discussion of semantics. 

 

We can distinguish, in English, between two types of (declarative) sentences: simple and 

compound. A simple sentence is one that does not contain any other sentence as a component part. 

A compound sentence is one that contains at least one other sentence as a component part. (We 

will not give a rigorous definition of what it is for one sentence to be a component part of another 

sentence. Rather, we will try to establish an intuitive grasp of the relation by giving examples, and 

stipulate that a rigorous definition could be provided, but is too much trouble to bother with.) 

‘Beyoncé is logical’ is a simple sentence; none of its parts is itself a sentence.4 ‘Beyoncé is logical 

and James Brown is alive’ is a compound sentence: it contains two simple sentences as component 

parts—namely, ‘Beyoncé is logical’ and ‘James Brown is alive’. 

 

In SL, we will use capital letters—‘A’, ‘B’, ‘C’, …, ‘Z’—to stand for simple sentences. Our 

practice will be simply to choose capital letters for simple sentences that are easy to remember. 

For example, we can choose ‘B’ to stand for ‘Beyoncé is logical’ and ‘J’ to stand for ‘James Brown 

is alive’. Easy enough. The hard part is symbolizing compound sentences in SL. How would we 

handle ‘Beyoncé is logical and James Brown is alive’, for example? Well, we’ve got capital letters 

to stand for the simple parts of the sentence, but that leaves out the word ‘and’. We need more 

symbols. 

 

We will distinguish five different kinds of compound sentence, and introduce a special SL symbol 

for each. Again, at this stage we are only discussing the syntax of SL—the rules for combining its 

symbols into well-formed constructions. We will have some hints about the semantics of these 

                                                 
3 That’s actually a controversial claim about the role of semantics. Your humble author, for example, is one of the 

weirdos who thinks it not true (of natural language, at least). But let’s leave those deviant linguists and philosophers 

(and their abstruse arguments) to one side and just say: semantics gives you truth-conditions. That’s certainly true of 

our artificial language SL. 
4 You might think ‘Beyoncé is’ is a part of the sentence that qualifies as a sentence itself—a sentence claiming that 

she exists, maybe. But that won’t do. The word ‘is’ in the original sentence is the “‘is’ of predication”—a mere linking 

verb; ‘Beyoncé is’ only counts as a sentence if you change the meaning of ‘is’ to the “‘is’ of existence”. Anyway, stop 

causing trouble. This is why we didn’t give a rigorous definition of ‘component part’; we’d get bogged down in these 

sorts of arcane distinctions. 
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new symbols—hints about their meanings—but a full treatment of that topic will not come until 

the next section. 

 

Conjunctions 

 

The first type of compound sentence is one that we’ve already seen. Conjunctions are, roughly, 

‘and’-sentences—sentences like ‘Beyoncé is logical and James Brown is alive’. We’ve already 

decided to let ‘B’ stand for ‘Beyoncé is logical’ and to let ‘J’ stand for ‘James Brown is alive’. 

What we need is a symbol that stands for ‘and’. In SL, that symbol is a “dot”. It looks like this: •.  

 

To form a conjunction in SL, we simply stick the dot between the two component letters, thus: 

 

B • J 

 

That is the SL version of ‘Beyoncé is logical and James Brown is alive’. 

 

A note on terminology. A conjunction has two components, one on either side of the dot. We will 

refer to these as the “conjuncts” of the conjunction. If we need to be specific, we might refer to the 

“left-hand conjunct” (‘B’ in this case) or the “right-hand conjunct” (‘J’ in this case).  

 

Disjunctions 

 

Disjunctions are, roughly, ‘or’-sentences—sentences like ‘Beyoncé is logical or James Brown is 

alive’. Sometimes, the ‘or’ is accompanied by the word ‘either’, as in ‘Either Beyoncé is logical 

or James Brown is alive’. Again, we let ‘B’ stand for ‘Beyoncé is logical’ and let ‘J’ stand for 

‘James Brown is alive’. What we need is a symbol that stands for ‘or’ (or ‘either/or’). In SL, that 

symbol is a “wedge”. It looks like this: .  

 

To form a conjunction in SL, we simply stick the wedge between the two component letters, thus: 

 

B  J 

 

That is the SL version of ‘Beyoncé is logical or James Brown is alive’. 

 

A note on terminology. A disjunction has two components, one on either side of the wedge. We 

will refer to these as the “disjuncts” of the disjunction. If we need to be specific, we might refer to 

the “left-hand disjunct” (‘B’ in this case) or the “right-hand disjunct” (‘J’ in this case).  

 

Negations 

 

Negations are, roughly, ‘not’-sentences—sentences like ‘James Brown is not alive’. You may find 

it surprising that this would be considered a compound sentence. It is not immediately clear how 

any component part of this sentence is itself a sentence. Indeed, if the definition of ‘component 

part’ (which we intentionally have not provided) demanded that parts of sentences contain only 

contiguous words (words next to each other), you couldn’t come up with a part of ‘James Brown 

is not alive’ that is itself a sentence. But that is not a condition on ‘component part’. In fact, this 
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sentence does contain another sentence as a component part—namely, ‘James Brown is alive’. 

This can be made more clear if we paraphrase the original sentence. ‘James Brown is not alive’ 

means the same thing as ‘It is not the case that James Brown is alive’. Now we have all the words 

in ‘James Brown is alive’ next to each other; it is clearly a component part of the larger, compound 

sentence. We have ‘J’ to stand for the simple component; we need a symbol for ‘it is not the case 

that’. In SL, that symbol is a “tilde”. It looks like this: ~. 

 

To form a negation in SL, we simply prefix a tilde to the simpler component being negated: 

 

~ J 

 

This is the SL version of ‘James Brown is not alive’. 

 

Conditionals 

 

Conditionals are, roughly, ‘if/then’ sentences—sentences like ‘If Beyoncé is logical, then James 

Brown is alive’. (James Brown is actually dead. But suppose Beyoncé is a “James Brown-truther”, 

a thing that I just made up. She claims that James Brown faked his death, that the Godfather of 

Soul is still alive, getting funky in some secret location.5 In that case, the conditional sentence 

might make sense.) Again, we let ‘B’ stand for ‘Beyoncé is logical’ and let ‘J’ stand for ‘James 

Brown is alive’. What we need is a symbol that stands for the ‘if/then’ part. In SL, that symbol is 

a “horseshoe”. It looks like this: .  

 

To form a conditional in SL, we simply stick the horseshoe between the two component letters 

(where the word ‘then’ occurs), thus: 

 

B  J 

 

That is the SL version of ‘If Beyoncé is logical, then James Brown is alive’. 

 

A note on terminology. Unlike our treatment of conjunctions and disjunctions, we will distinguish 

between the two components of the conditional. The component to the left of the horseshoe will 

be called the “antecedent” of the conditional; the component after the horseshoe is its 

“consequent”. As we will see when we get to the semantics for SL, there is a good reason for 

distinguishing the two components. 

 

Biconditionals 

 

Biconditionals are, roughly, ‘if and only if’-sentences—sentences like ‘Beyoncé is logical if and 

only if James Brown is alive’. (This is perhaps not a familiar locution. We will talk more about 

what it means when we discuss semantics.) Again, we let ‘B’ stand for ‘Beyoncé is logical’ and 

let ‘J’ stand for ‘James Brown is alive’. What we need is a symbol that stands for the ‘if and only 

if’ part. In SL, that symbol is a “triple-bar”. It looks like this: . 

 

                                                 
5 Play along. 
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To form a biconditional in SL, we simply stick the triple-bar between the two component letters, 

thus: 

 

B  J 

 

That is the SL version of ‘Beyoncé is logical if and only if James Brown is alive’. 

 

There are no special names for the components of the biconditional. 

 

Punctuation – Parentheses 

 

Our language, SL, is quite austere: so far, we have only 31 different symbols—the 26 capital 

letters, and the five symbols for the five different types of compound sentence. We will now add 

two more: the left- and right-hand parentheses. And that’ll be it. 

 

We use parentheses in SL for one reason (and one reason only): to remove ambiguity. To see how 

this works, it will be helpful to draw an analogy between SL and the language of simple arithmetic. 

The latter has a limited number of symbols as well: numbers, signs for the arithmetical operations 

(addition, subtraction, multiplication, division), and parentheses. The parentheses are used in 

arithmetic for disambiguation. Consider this combination of symbols: 

 

2 + 3 x 5 

 

As it stands, this formula is ambiguous. I don’t know whether this is a sum or a product; that is, I 

don’t know which operator—the addition sign or the multiplication sign—is the main operator.6 

We can use parentheses to disambiguate, and we can do so in two different ways: 

 

(2 + 3) x 5 

 

or 

 

2 + (3 x 5) 

 

And of course, where we put the parentheses makes a big difference. The first formula is a product; 

the multiplication sign is the main operator. It comes out to 25. The second formula is a sum; the 

addition sign is the main operator. And it comes out to 17. Different placement of parentheses, 

different results. 

 

This same sort of thing is going to arise in SL. We use the same term we use to refer to the addition 

and multiplication signs—‘operator’—to refer to dot, wedge, tilde, horseshoe, and triple-bar. (As 

we will see when we look at the semantics for SL, this is entirely proper, since the SL operators 

                                                 
6 You may have learned an “order of operations” in grade school, according to which multiplication takes precedence 

over addition, so that there would be no ambiguity in this expression. But the order of operations is just a (mostly 

arbitrary) way of removing ambiguity that would be there without it. The point is, absent some sort of disambiguating 

convention—whether it’s parentheses or an order of operations—the meanings of expressions like this are 

indeterminate. 
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stand for mathematical functions on truth-values.) There are ways of combining SL symbols into 

compound formulas with more than one operator; and just as is the case in arithmetic, without 

parentheses, these formulas would be ambiguous. Let’s look at an example. 

 

Consider this sentence: ‘If Beyoncé is logical and James Brown is alive, then I’m the Queen of 

England’. This is a compound sentence, but it contains both the word ‘and’ and the ‘if/then’ 

construction. And it has three simple components: the two that we’re used to by now about 

Beyoncé and James Brown, which we’ve been symbolizing with ‘B’ and ‘J’, respectively, and a 

new one—‘I’m the Queen of England’—which we may as well symbolize with a ‘Q’. Based on 

what we already know about how SL symbols work, we would render the sentence like this: 

 

B • J  Q 

 

But just as was the case with the arithmetical example above, this formula is ambiguous. I don’t 

know what kind of compound sentence this is—a conjunction or a conditional. That is, I don’t 

know which of the two operators—the dot or the horseshoe—is the main operator. In order to 

disambiguate, we need to add some parentheses. There are two ways this can go, and we need to 

decide which of the two options correctly captures the meaning of the original sentence: 

 

(B • J)  Q 

 

or 

 

B • (J  Q) 

 

The first formula is a conditional; horseshoe is its main operator, and its antecedent is a compound 

sentence (the conjunction ‘B • J’). The second formula is a conjunction; dot is its main operator, 

and its right-hand conjunct is a compound sentence (the conditional ‘J  Q’). We need to decide 

which of these two formulations correctly captures the meaning of the English sentence ‘If 

Beyoncé is logical and James Brown is alive, then I’m the Queen of England’. 

 

The question is, what kind of compound sentence is the original? Is it a conditional or a 

conjunction? It is not a conjunction. Conjunctions are, roughly (again, we’re not really doing 

semantics yet), ‘and’-sentences. When you utter a conjunction, you’re committing yourself to both 

of the conjuncts. If I say, “Beyoncé is logical and James Brown is alive,” I’m telling you that both 

of those things are true. If we construe the present sentence as a conjunction, properly symbolized 

as ‘B • (J  Q)’, then we take it that the person uttering the sentence is committed to both conjuncts; 

she’s telling us that two things are true: (1) Beyoncé is logical and (2) if James Brown is alive then 

she’s the Queen of England. So, if we take this to be a conjunction, we’re interpreting the speaker 

as committed to the proposition that Beyoncé is logical. But clearly she’s not. She uttered ‘If 

Beyoncé is logical and James Brown is alive, then I’m the Queen of England’ to express 

dubiousness about Beyoncé’s logicality (and James Brown’s status among the living). This 

sentence is not a conjunction; it is a conditional. It’s saying that if those two things are true (about 

Beyoncé and James Brown), then I’m the Queen of England. The utterer doubts both conjuncts in 

the antecedent. The proper symbolization of this sentence is the first one above: ‘(B • J)  Q’. 

 



Sentential Logic 125 

 

 

Again, in SL, parentheses have one purpose: to remove ambiguity. We only use them for that. This 

kind of ambiguity arises in formulas, like the one just discussed, involving multiple instances of 

the operators dot, wedge, horseshoe, and triple-bar. 

 

Notice that I didn’t mention the tilde there. Tilde is different from the other four. Dot, wedge, 

horseshoe, and triple-bar are what we might call “two-place operators”. There are two simpler 

components in conjunctions, disjunctions, conditionals, and biconditionals. Negations, on the 

other hand, have only one simpler component; hence, we might call tilde a “one-place operator”. 

It only operates on one thing: the sentence it negates.  

 

This distinction is relevant to our discussion of parentheses and ambiguity. We will adopt a 

convention according to which the tilde negates the first well-formed SL construction immediately 

to its right. This convention will have the effect of removing potential ambiguity without the need 

for parentheses. Consider the following combination of SL symbols: 

 

~ A  B 

 

It may appear that this formula is ambiguous, with the following two possible ways of 

disambiguating: 

 

~ (A  B) 

 

or 

 

(~ A)  B 

 

But this is not the case. Given our convention—tilde negates the first well-formed SL construction 

immediately to its right—the original formula—‘~ A  B’—is not ambiguous; it is well-formed. 

Since ‘A’ is itself a well-formed SL construction (of the simplest kind), the tilde in ‘~ A  B’ 

negates the ‘A’ only. This means that we don’t have to indicate this fact with parentheses, as in 

the second of the two potential disambiguations above. That kind of formula, with parentheses 

around a tilde and the item it negates, is not a well-formed construction in SL. Given our 

convention about tildes, the parentheses around ‘~ A’ are redundant. 

 

The first potential disambiguation—‘~ (A  B)’—is well-formed, and it means something different 

from ‘~ A  B’. In the former, the tilde negates the entire disjunction, ‘A  B’; in the latter, it only 

negates ‘A’. That makes a difference. Again, an analogy to arithmetic is helpful here. Compare the 

following two formulas: 

 

- (2 + 5) 

 

vs. 

 

-2 + 5 
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In the first, the minus-sign covers the entire sum, and so the result is -7; in the second, it only 

covers the 2, so the result is 3. This is exactly analogous to the difference between ‘~ (A  B)’ and 

‘~ A  B’. The tilde has wider scope in the first formula, and that makes a difference. The 

difference can only be explained in terms of meaning—which means it is time to turn our attention 

to the semantics of SL. 

 

 

III.  Semantics of SL 

 

Our task is to give precise meanings to all of the well-formed formulas of SL. We will refer to 

these, quite sensibly, as “sentences of SL”. Some of this task is already complete. We know 

something about the meanings to the 26 capital letters: they stand for simple English sentences of 

our choosing. While the semantics for a natural language like English is complicated (What is the 

meaning of a sentence? Its truth-conditions? The proposition expressed? Are those two things the 

same? Is it something else entirely? Ugh.), the semantics for SL sentences is simple: all we care 

about is truth-value. A sentence in SL can have one of two semantic values: true or false. That’s 

it.  

 

This is one of the ways in which the move to SL is a taming of natural language. In SL, every 

sentence has a determinate truth-value; and there are only two choices: true or false. English and 

other natural languages are more complicated than this. Of course, there’s the issue of non-

declarative sentences, which don’t express propositions and don’t have truth-values at all.7 But 

even if we restrict ourselves to declarative English sentences, things don’t look quite as simple as 

they are in SL. Consider the sentence ‘Napoleon was short’. You may not be aware that the popular 

conception of the French Emperor as diminutive in stature has its roots in British propaganda at 

the time. As a matter of fact, he was about 5’ 7”. Is that short? Well, not at the time (late 18th, early 

19th centuries); people were shorter back then (nutrition wasn’t what it is these days, e.g.), and so 

Napoleon was about average or slightly above. People are taller now, though, so 5’ 7” might be 

considered short. At least, short for a man. A grown man, that is. I mean, a grown man who’s not 

a dwarf. Er, also, a grown non-dwarf man of French extraction (he’d be a tall man in Cambodia, 

for example, where the average height is only 5’ 4”). The average height for a modern Frenchman 

is 5’ 9.25”. Napoleon is 2.25 inches shorter than average. Is that short? Heck, I don’t know! 

 

The problem here is that relative terms like ‘short’ have borderline cases; they’re vague. It’s not 

clear how to assign a truth-value to sentences like ‘Napoleon is short’. So, in English, we might 

say that they lack a truth-value (absent some explicit specification of the relevant standards). 

Logics that are more sophisticated than our SL have developed ways to deal with these sorts of 

cases. Instead of just two truth-values, some logics add more. There are three-values logics, where 

you have true, false, and neither. So we could say ‘Napoleon is short’ is neither. There are logics 

with infinitely many truth-values between true and false (where false is zero and true is 1, and 

every real number in between is a degree of truth); in such a system, we could assign, I don’t know, 

.62 to the proposition that Napoleon is short. The point is, English and other natural languages are 

messy when it comes to truth-value. We’re taming them in SL by assuming that every SL sentence 

                                                 
7 Pausing briefly to note, once again, that this talk of sentences, rather than the propositions that they express, having 

truth-values is a bit fast and loose. Reaffirming our earlier stance on this: not a big deal. 
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has a determinate truth-value, and that there are only two truth-values: true and false—which we 

will indicate, by the way, with the letters ‘T’ and ‘F’. 

 

Our task from here is to provide semantics for the five operators: tilde, dot, wedge, triple-bar, and 

horseshoe (we start with tilde because it’s the simplest, and we save horseshoe for last because it’s 

quite a bit more involved). We will specify the meanings of these symbols in terms of their effects 

on truth-value: what is the truth-value of a compound sentence featuring them as the main operator, 

given the truth-values of the components? The semantic values of the operators will be truth-

functions: systematic accounts of the truth-value outputs (of the compound sentence) resulting 

from the possible truth-value inputs (of the simpler components). 

 

Negations (TILDE) 
 

Because tilde is a one-place operator, this is the simplest operator to deal with. The general form 

of a negation is ~ p, where ‘p’ is a variable standing for any generic SL sentence, simple or 

compound. As a lower-case letter, ‘p’ is not part of our language (SL); rather, it’s a tool we use to 

talk about our language—to refer to generic well-formed constructions within it. 

 

We need to give an account of the meaning of the tilde in terms of its effect on truth-value. Tilde, 

as we said, is the SL equivalent of ‘not’ or ‘it is not the case that’. Let’s think about what happens 

in English when we use those terms. If we take a true sentence, say ‘Edison invented the light 

bulb’, and form a compound with it and ‘not’, we get ‘Edison did not invent the light bulb’—a 

falsehood. If we take a false sentence, like ‘James Brown is alive’, and negate it, we get ‘James 

Brown is not alive’—a truth.  

 

Evidently, the effect of negation on truth-value is to turn a truth into a falsehood, and a falsehood 

into a truth. We can represent this graphically, using what we’ll call a “truth-table.” The following 

table gives a complete specification of the semantics of tilde: 

 

p ~ p 

T F 

F T 

 

In the left-hand column, we have ‘p’, which, as a variable, stands for a generic, unspecified SL 

sentence. Since it’s unspecified, we don’t know its truth-value; but since it’s a sentence in SL, we 

do know that there are only two possibilities for its truth-value: true or false (T or F). So in the first 

column, we list those two possibilities. In the second column, we have ‘~ p’, the negation of 

whatever ‘p’ is. We can compute the truth-value of the negation based on the truth-value of the 

sentence being negated: if the original sentence is true, then its negation is false; if the original 

sentence is false, then the negation is true. This is what we represent when we write ‘F’ and ‘T’ 

underneath the tilde (the operator that effects the change in truth-value) in the second column, in 

the same rows as their opposites. 

 

Tilde is a truth-functional operator. Its meaning is specified by a function: if you input a T, the 

output is an F; if you input an F, the output is a T. The other four operators will also be defined in 
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terms of the truth-function they represent. This is exactly analogous, again, to arithmetic. Addition, 

with its operator ‘+’, is a function on numbers. Input 1 and 3, and the output is 4. In SL, we only 

have two values—T and F—but it’s the same kind of thing. We could just as well use numbers to 

represent the truth-values: 0 for false and 1 for true, for example. In that case, tilde would be a 

function that outputs 0 when 1 is the input, and outputs 1 when 0 is the input.  

 

Conjunctions (DOT) 

 

Our rough-and-ready characterization of conjunctions was that they are ‘and’-sentences—

sentences like ‘Beyoncé is logical and James Brown is alive’. Since these sorts of compound 

sentences involve two simpler components, we say that dot is a two-place operator. So when we 

specify the general form of a conjunction using generic variables, we need two of them. The 

general form of a conjunction in SL is p • q. The questions we need to answer are these: Under 

what circumstances is the entire conjunction true, and under what circumstances false? And how 

does this depend on the truth-values of the component parts? 

 

We remarked earlier that when someone utters a conjunction, they’re committing themselves to 

both of the conjuncts. If I tell you that Beyoncé is wise and James Brown is alive, I’m committing 

myself to the truth of both of those alleged facts; I am, as it were, promising you that both of those 

things are true. So, if even one of them turns out false, I’ve broken my promise; the only way the 

promise is kept is if both of them turn out to be true. 

 

This is how conjunctions work, then: they’re true just in case both conjuncts are true; false 

otherwise. We can represent this graphically, with a truth-table defining the dot: 

 

p q p • q 

T T    T 

T F    F 

F T    F 

F F    F 

 

Since the dot is a two-place operator, we need columns for each of the two variables in its general 

form—p and q. Each of these is a generic SL sentence that can be either true or false. That gives 

us four possibilities for their truth-values as a pair: both true, p true and q false, p false and q true, 

both false. These four possibilities give us the four rows of the table. For each of these possible 

inputs to the truth-function, we get an output, listed under the dot. T is the output when both inputs 

are Ts; F is the output in every other circumstance. 

 

Disjunctions (WEDGE) 

 

Our rough characterization of disjunctions was that they are ‘or’-sentences—sentences like 

‘Beyoncé is logical or James Brown is alive’. In SL, the general form of a disjunction is p  q. We 

need to figure out the circumstances in which such a compound is true; we need the truth-function 

represented by the wedge. 
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At this point we face a complication. Wedge is supposed to capture the essence of ‘or’ in English, 

but the word ‘or’ has two distinct senses. This is one of those cases where natural language needs 

to be tamed: our wedge can only have one meaning, so we need to choose between the two 

alternative senses of the English word ‘or’. 

 

‘Or’ can be used exclusively or inclusively. The exclusive sense of ‘or’ is expressed in a sentence 

like this: ‘Clinton will win the election or Trump will win the election’. The two disjuncts present 

exclusive possibilities: one or the other will happen, but not both. The inclusive sense of ‘or’, 

however, allows the possibility of both. If I told you I was having trouble deciding what to order 

at a restaurant, and said, “I’ll order lobster or steak,” and then I ended up deciding to get the surf 

‘n’ turf (lobster and steak combined in the same entrée), you wouldn’t say I had lied to you when 

I said I’d order lobster or steak. The inclusive sense of ‘or’ allows for one or the other—or both. 

 

We will use the inclusive sense of ‘or’ for our wedge. There are arguments for choosing the 

inclusive sense over the exclusive one, but we will not dwell on those here.8 We need to choose a 

meaning for wedge, and we’re choosing the inclusive sense of ‘or’. As we will see later, the 

exclusive sense will not be lost to us because of this choice: we will be able to symbolize exclusive 

‘or’ within SL, using a combination of operators. 

 

So, wedge is inclusive ‘or’. It’s true whenever one or the other—or both—conjuncts is true; false 

otherwise. This is its truth-table definition: 

 

p q p  q 

T T    T 

T F    T 

F T    T 

F F    F 

 

Biconditionals (TRIPLE-BAR) 

 

As we said, biconditionals are, roughly, ‘if and only if’-sentences—sentences like ‘Beyoncé is 

logical if and only if James Brown is alive’. ‘If and only if’ is not a phrase most people use in 

everyday life, but the meaning is straightforward: it’s used to claim that both components have the 

same truth-value, that one entails the other and vice versa, that they can’t have different truth-

values. In SL, the general form of a biconditional is p  q. This is the truth-function: 

 

 

 

 

 

                                                 
8 As was the case when we had to make a choice about the word ‘some’ in Aristotelian logic, the argument makes the 

case that the inclusive sense is the core meaning of ‘or’, and the exclusive sense is a meaning that’s often, but not 

always, conveyed when we use ‘or’ in particular circumstances—an implicature. This line of reasoning has both 

adherents and detractors. 
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p q p  q 

T T    T 

T F    F 

F T    F 

F F    T 

 

The triple-bar is kind of like a logical equals-sign (it even resembles ‘=’): the function delivers an 

output of T when both components are the same, F when they’re not.  

 

While the truth-functional meaning of triple-bar is now clear, it still may be the case that the 

intuitive meaning of the English phrase ‘if and only if’ remains elusive. This is natural. Fear not: 

we will have much more to say about that locution when we discuss translating between English 

and SL; a full understanding of biconditionals can only be achieved based on a full understanding 

of conditionals, to which, as the names suggest, they are closely related. We now turn to a 

specification of the truth-functional meaning of the latter. 

 

Conditionals (HORSESHOE) 
 

Our rough characterization of conditionals was that they are ‘if/then’ sentences—sentences like ‘If 

Beyoncé is logical, then James Brown is alive’. We use such sentences all the time in everyday 

speech, but is surprisingly difficult to pin down the precise meaning of the conditional, especially 

within the constraints imposed by SL. There are in fact many competing accounts of the 

conditional—many different conditionals to choose from—in a literature dating back all the way 

to the Stoics of ancient Greece. Whole books can be—and have been—written on the topic of 

conditionals. In the course of our discussion of the semantics for horseshoe, we will get a sense of 

why this is such a vexed topic; it’s complicated. 

 

The general form of a conditional in SL is p  q. We need to decide for which values of p and q 

the conditional turns out true and false. To help us along (by making things more vivid), we’ll 

consider an actual conditional claim, with a little story to go along with it. Suppose Barb is 

suffering from joint pain; maybe it’s gout, maybe it’s arthritis—she doesn’t know and hasn’t been 

to the doctor to find out. She’s complaining about her pain to her neighbor, Sally. Sally is a big 

believer in “alternative medicine” and “holistic healing”. After hearing a brief description of the 

symptoms, Sally is ready with a prescription, which she delivers to Barb in the form of a 

conditional claim: “If you drink this herbal tea every day for a week, then your pain will go away.” 

She hands over a packet of tea leaves and instructs Barb in their proper preparation. 

 

We want to evaluate Sally’s conditional claim—that if Barb drinks the herbal tea daily for a week, 

then her pain will go away—for truth/falsity. To do so, we will consider various scenarios, the 

details of which will bear on that evaluation. 

 

Scenario #1: Barb does in fact drink the tea every day for a week as prescribed, and, after doing 

so, lo and behold, her pain is gone. Sally was right! In this scenario, we would say that the 

conditional we’re evaluating is true. 
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Scenario #2: Barb does as Sally said and drinks the tea every day for a week, but, after the week 

is finished, the pain remains, the same as ever. In this scenario, we would say that Sally was wrong: 

her conditional advice was false. 

 

Perhaps you can see what I’m doing here. Each of the scenarios represents one of the rows in the 

truth-table definition for the horseshoe. Sally’s conditional claim has an antecedent—Barb drinks 

the tea every day for a week—and a consequent—Barb’s pain goes away. These are p and q, 

respectively, in the conditional p  q. In scenario #1, both p and q were true: Barb did drink the 

tea, and the pain did go away; in scenario #2, p was true (Barb drank the tea) but q was false (the 

pain didn’t go away). These two scenarios are the first two rows of the four-row truth tables we’ve 

already seen for dot, wedge, and triple-bar. For horseshoe, the truth-function gives us T in the first 

row and F in the second: 

 

p q p  q 

T T    T 

T F    F 

 

All that’s left is to figure out what happens in the third and fourth rows of the table, where the 

antecedent (p, Barb drinks the tea) is false both times and the consequent is first true (in row 3) 

and then false (in row 4). There are two more scenarios to consider. 

 

In scenario #3, Barb decides Sally is a bit of a nut, or she drinks the tea once and it tastes awful so 

she decides to stop drinking it—whatever the circumstances, Barb doesn’t drink the tea for a week; 

the antecedent is false. But in this scenario, it turns out that after the week is up, Barb’s pain has 

gone away; the consequent is true. What do we say about Sally’s advice—if you drink the tea, the 

pain will go away—in this set of circumstances? 

 

In scenario #4, again Barb does not drink the tea (false antecedent), and after the week is up, the 

pain remains (false consequent). What do we say about the Sally’s conditional advice in this 

scenario? 

 

It’s tempting to say that in the 3rd and 4th scenarios, since Barb didn’t even try Sally’s remedy, 

we’re not in a position to evaluate Sally’s advice for truth or falsity. The hypothesis wasn’t even 

tested. So, we’re inclined to say ‘If you drink the tea, then the pain will go away’ is neither true 

nor false. But while this might be a viable option in English, it won’t work in SL. We’ve made the 

simplifying assumptions that every SL sentence must have a truth-value, and that that the only two 

possibilities are true and false. We can’t say it has no truth-value; we can’t add a third value and 

call it “neither”. We have to put a T or an F under the horseshoe in the third and fourth rows of the 

truth table for that operator. Given this restriction, and given that we’ve already decided how the 

first two rows should work out, there are four possible ways of specifying the truth-function for 

horseshoe: 
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p q    (1)    (2)    (3)    (4) 

T T     T     T     T     T 

T F     F     F     F     F 

F T     F     T     F     T 

F F     F     F     T     T 

 

These are our only options (remember, the top two rows are settled; scenarios 1 and 2 above had 

clear results). Which one captures the meaning of the conditional best?  

 

Option 1 is tempting: as we noted, in rows 3 and 4, Sally’s hypothesis isn’t even tested. If we’re 

forced to choose between true and false, we might as well go with false. The problem with this 

option is that this truth-function—true when both components are true; false otherwise—is already 

taken. That’s the meaning of dot. If we choose option 1, we make horseshoe and dot mean the 

same thing. That won’t do: they’re different operators; they should have different meanings. ‘And’ 

and ‘if/then’ don’t mean the same thing in English, clearly. 

 

Option 2 also has its charms. OK, we might say, in neither situation is Sally’s hypothesis tested, 

but at least row 3 has something going for it, Sally-wise: the pain does go away. So let’s say her 

conditional is true in that case, but false in row 4 when there still is pain. Again, this won’t do. 

Compare the column under option 2 to the column under q. They’re the same: T, F, T, F. That 

means the entire conditional, p  q, has the same meaning as its consequent, plain old q. Not good. 

The antecedent, p, makes no difference to the truth-value of the conditional in this case. But it 

should; we shouldn’t be able to compute the truth-value of a two-place function without even 

looking at one of the inputs. 

 

Option 3 is next. Some people find it reasonable to say that the conditional is false in row 3: there’s 

something about the disappearance of the pain, despite not drinking the tea, that’s incompatible 

with Sally’s prediction. And if we can’t put an F in the last row too (this is just option 1 again), 

then make it a T. But this fails for the same reason option 1 did: the truth-function is already taken, 

this time by the triple-bar. ‘If and only if’ is a much stronger claim than the mere ‘if/then’; 

biconditionals must have a different meaning from mere conditionals. 

 

That leaves option 4. This is the one we’ll adopt, not least because it’s the only possibility left. 

The conditional is true when both antecedent and consequent are true—scenario 1; it’s false when 

the antecedent is true but the consequent false—scenario 2; and it’s true whenever the antecedent 

is false—scenarios 3 and 4. This is the definition of horseshoe: 

 

p q p  q 

T T    T 

T F    F 

F T    T 

F F    T 
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It’s not ideal. The first two rows are quite plausible, but there’s something profoundly weird about 

saying that the sentence ‘If you drink the tea, then the pain will go away’ is true whenever the tea 

is not drunk. Yet that is our only option. We can perhaps make it a bit more palatable by saying—

as we did about universal categorical propositions with empty subject classes—that while it’s true 

in such cases, it’s only true vacuously or trivially—true in a way that doesn’t tell you about how 

things are in the world.  

 

What can also help a little is to point out that while rows 3 and 4 don’t make much sense for the 

Barb/Sally case, they do work for other conditionals. The horror author Stephen King lives in 

Maine (half his books are set there, it seems). Consider this conditional: ‘If Stephen King is the 

Governor of Maine, then he lives in Maine’. While a prominent citizen, King is not Maine’s 

governor, so the antecedent is false. He is, though, as we’ve noted, a resident of Maine, so the 

consequent is true. We’re in row 3 of the truth-table for conditionals here. And intuitively, the 

conditional is true: he’s not the governor, but if he were, he would live in Maine (governors reside 

in their states’ capitals). And consider this conditional: ‘If Stephen King is president of the United 

States, then he lives in Washington, DC’. Now both the antecedent (King is president) and the 

consequent (he lives in DC) are false: we’re in row 4 of the table. But yet again, the conditional 

claim is intuitively true: if he were president, he would live in DC. 

 

Notice the trick I pulled there: I switched from the so-called indicative mood (if he is) to the 

subjunctive (if he were). The truth of the conditional is clearer in the latter mood than the former. 

But this trick won’t always work to make the conditional come out true in the third and fourth 

rows. Consider: ‘If Stephen King were president of the United States, then he would live in Maine’ 

and ‘If Stephen King were Governor of Maine, then he would live in Washington, DC’. These are 

third and fourth row examples, respectively, but neither is intuitively true. 

 

By now perhaps you are getting a sense of why conditionals are such a vexed topic in the history 

of logic. A variety of approaches, with attendant alternative logical formalisms, have been 

developed over the centuries (and especially in the last century) to deal with the various problems 

that arise in connection with conditional claims. Ours is the very simplest approach, the one with 

which to begin. As this is an introductory text, this is appropriate. You can investigate alternative 

accounts of the conditional if you extend your study of logic further. 

 

Computing Truth-Values of Compound SL Sentences 

 

With the truth-functional definitions of the five SL operators in hand, we can develop a preliminary 

skill that will be necessary to deploy when the time comes to test SL arguments for validity. We 

need to be able to compute the truth-values of compound SL sentences, given the truth-values of 

their simplest parts (the simple sentences—capital letters). To do so, we must first determine what 

type of compound sentence we’re dealing with—negation, conjunction, disjunction, conditional, 

or biconditional. This involves deciding which of the operators in the SL sentence is the main 

operator. We then compute the truth-value of the compound according to the definition for the 

appropriate operator, using the truth-values of the simpler components. If these components are 

themselves compound, we determine their main operators and compute accordingly, in terms of 

their simpler components—repeating as necessary until we get down to the simplest components 

of all, the capital letters. A few examples will make the process clear. 
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Let’s suppose that A and B are true SL sentences. Consider this compound: 

 

~ A  B 

 

What is its truth-value? To answer that question, we first have to figure out what kind of compound 

sentence we’re dealing with. It has two operators—the tilde and the wedge. Which of these is the 

main operator; that is, do we have a negation or a disjunction? We answered this question earlier, 

when we were discussing the syntax of SL. Our convention with tildes is that they negate the first 

well-formed construction immediately to their right. In this case, ‘A’ is the first well-formed 

construction immediately to the right of the tilde, so the tilde negates it. That means wedge is the 

main operator; this is a disjunction, where the left-hand disjunct is ~ A and the right-hand disjunct 

is B. To compute the truth-value of the disjunction, we need to know the truth-values of its 

disjuncts. We know that B is true; we need to know the truth-value of ~ A. That’s easy, since A is 

true, ~ A must be false. It’s helpful to keep track of one’s step-by-step computations like so: 

 

                                                                           T     T 

~ A  B 

                                                                       F 

 

I’ve marked the truth-values of the simplest components, A and B, on top of those letters. Then, 

under the tilde, the operator that makes it happen, I write ‘F’ to indicate that the left-hand disjunct, 

~ A, is false. Now I can compute the truth-value of the disjunction: the left-hand disjunct is false, 

but the right hand disjunct is true; this is row 3 of the wedge truth-table, and the disjunction turns 

out true in that case. I indicate this with a ‘T’ under the wedge, which I highlight (with boldface 

and underlining) to emphasize the fact that this is the truth-value of the whole compound sentence: 

 

                                                                           T     T 

~ A  B 

                                                                       F 

                                                                              T 

 

When we were discussing syntax, we claimed that adding parentheses to a compound like the last 

one would alter its meaning. We’re now in a position to prove that claim. Consider this SL sentence 

(where A and B are again assumed to be true): 

 

                                                                           T     T 

~ (A  B) 

 

Now the main operator is the tilde: it negates the entire disjunction inside the parentheses. To 

discover the effect of that negation on truth-value, we need to compute the truth-value of the 

disjunction that it negates. Both A and B are true; this is the top row of the wedge truth-table—

disjunctions turn out true in such cases: 

 

                                                                           T     T 

~ (A  B) 

                                                                               T 
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So the tilde is negating a truth, giving us a falsehood: 

 

                                                                           T     T 

~ (A  B) 

                                                                               T 

                                                                      F 

 

The truth-value of the whole is false; the similar-looking disjunction without the parentheses was 

true. These two SL sentences must have different meanings; they have different truth-values. 

It will perhaps be useful to look at one more example, this time of a more complex SL sentence. 

Suppose again that A and B are true SL simple sentences, and that X and Y are false SL simple 

sentences. Let’s compute the truth-value of the following compound sentence: 

 

~ (A • X)  (B  ~ Y) 

 

As a first step, it’s useful to mark the truth-values of the simple sentences: 

 

                                                                T     F        T        F 

~ (A • X)  (B  ~ Y) 

 

Now, we need to figure out what kind of compound sentence this is; what is the main operator? 

This sentence is a conditional; the main operator is the horseshoe. The tilde at the far left negates 

the first well-formed construction immediately to its right. In this case, that is (A • X). ~ (A • X) 

is the antecedent of this conditional; (B  ~ Y) is the consequent. We need to compute the truth-

values of each of these before we can compute the truth-value of the whole compound. 

 

Let’s take the antecedent, ~ (A • X) first. The tilde negates the conjunction, so before we can know 

what the tilde does, we need to know the truth-value of the conjunction inside the parentheses. 

Conjunctions are true just in case both conjuncts are true; in this case, A is true but X is false, so 

the conjunction is false, and its negation must be true: 

 

                                                                T     F        T        F 

~ (A • X)  (B  ~ Y) 

                                                                    F 

                                                            T 

 

So the antecedent of our conditional is true. Let’s look at the consequent, (B  ~ Y). Y is false, so 

~ Y must be true. That means both disjuncts, B and ~ Y are true, making our disjunction true: 

 

                                                                T     F        T        F 

~ (A • X)  (B  ~ Y) 

                                                                    F                   T 

                                                            T                       T 

 

Both the antecedent and consequent of the conditional are true, so the whole conditional is true: 
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                                                                T     F        T        F 

~ (A • X)  (B  ~ Y) 

                                                                    F                   T 

                                                            T                       T 

                                                                             T 

 

One final note: sometimes you only need partial information to make a judgment about the truth-

value of a compound sentence. Look again at the truth table definitions of the two-place operators: 

 

p q  p • q  p  q    p  q    p  q   

T T     T     T     T     T 

T F     F     T     F     F 

F T     F     T     F     T 

F F     F     F     T     T 

 

For three of these operators—the dot, wedge, and horseshoe—one of the rows is not like the others. 

For the dot: it only comes out true when both p and q are true, in the top row. For the wedge: it 

only comes out false when both p and q are false, in the bottom row. For the horseshoe: it only 

comes out false when p is true and q is false, in the second row.  

 

Noticing this allows us, in some cases, to compute truth-values of compounds without knowing 

the truth-values of both components. Suppose again that A is true and X is false; and let Q be a 

simple SL sentence the truth-value of which is a mystery to you (it has one, like all of them must; 

I’m just not telling you what it is). Consider this compound: 

 

A  Q 

 

We know one of the disjuncts is true; we don’t know the truth-value of the other one. But we don’t 

need to! A disjunction is only false when both of its disjuncts are false; it’s true when even one of 

its disjuncts is true. A being true is enough to tell us the disjunction is true; Q doesn’t matter. 

 

Consider the conjunction: 

 

X • Q 

 

We only know the truth-value of one of the conjuncts: X is false. That’s all we need to know to 

compute the truth-value of the conjunction. Conjunctions are only true when both of their 

conjuncts are true; they’re false when even one of them is false. X being false is enough to tell us 

that this conjunction is false. 

 

Finally, consider these conditionals: 

 

Q  A  and  X  Q 
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They are both true. Conditionals are only false when the antecedent is true and the consequent is 

false; so they’re true whenever the consequent is true (as is the case in Q  A) and whenever the 

antecedent is false (as is the case in X  Q). 

 

 

EXERCISES 

 

Compute the truth-values of the following compound sentences, where A, B, and C are true; X, Y, 

and Z are false; and P and Q are of unknown truth-value. 

 

1. ~ B  X   2. A • ~ Z   3. ~ X  ~ C 

 

4. (B  C)  (X • Y)  5. ~ (C  (X • ~ Y))  6. (X  ~ A)  (~ Z • B) 

 

7. ~ (A  ~ X)  (C • ~ Y) 8. A  (~ X • ~ (C  Y)) 9. ~ (~Z  ~ (~ (A  B)  ~ X)) 

 

10. ~ (A  ~ (~ C  ( B • ~ X)))  (~ ((~ Y  ~ A)  ~B) • (A  (((B  ~ X)  Z)  ~Y))) 

 

11. ~ X  (Q  Z)  12. ~ Q • (A  (P • ~ B)) 13. ~ (Q • ~ Z)  (~ P  C) 

 

14. ~ (~ (A • B)  ((P  ~ C)  (~ X  Q)))   15. ~ P  (Q  P) 

 

 

IV.  Translating from English into SL 

 

Soon we will learn how to evaluate arguments in SL—arguments whose premises and conclusions 

are SL sentences. In real life, though, we’re not interested in evaluating arguments in some 

artificial language; we’re interested in evaluating arguments presented in natural languages like 

English. So in order for our evaluative procedure of SL argument to have any real-world 

significance, we need to show how SL arguments can be fair representations of natural-language 

counterparts. We need to show how to translate sentences in English into SL. 

 

We already have some hints about how this is done. We know that simple English sentences are 

represented as capital letters in SL. We know that our operators—tilde, dot, wedge, horseshoe, and 

triple-bar—are the SL counterparts of the English locutions ‘not’, ‘and’, ‘or’, ‘if/then’, and ‘if and 

only if’, respectively. But there is significantly more to say on the topic of the relationship between 

English and SL. Our operators—alone or in combination—can capture a much larger portion of 

English than that short list of words and phrases. 

 

Tilde, Dot, and Wedge 

 

Consider the word ‘but’. In English, it has a different meaning from the word ‘and’. When I say 

“Donald Trump is rich and generous,” I communicate one thing; when I say “Donald Trump is 

rich, but generous,” I communicate something slightly different. Both utterances convey the 

assertions that Trump is rich, on the one hand, and generous on the other. The ‘but’-sentence, 
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though, conveys something more—namely, that there’s something surprising about the generosity 

in light of the richness, that there’s some tension between the two. But notice that each of those 

utterances is true under the same circumstances: when Trump is both rich and generous; the 

difference between ‘but’ and ‘and’ doesn’t affect the truth-conditions. Since the meanings of our 

SL operators are specified entirely in terms of their effects on truth-values, SL is blind to the 

difference in meaning between ‘and’ and ‘but’. Since the truth-conditions for compounds featuring 

the two words are the same—true just in case both components are true, and false otherwise—we 

can use the dot to represent both. ‘Donald Trump is rich and generous’ and ‘Donald Trump is rich, 

but generous’ would both be rendered in SL as something like ‘R • G’ (where ‘R’ stands for the 

simple sentence ‘Trump is rich’ and ‘G’ stands for ‘Trump is generous’). Again, switching from 

English into SL is a strategy for dealing with the messiness of natural language: to conduct the 

kind of rigorous logical analyses involved in evaluating deductive arguments, we need a simpler, 

tamer language; the slight difference in meaning between ‘and’ and ‘but’ is one of the wrinkles we 

need to iron out before we can proceed. 

 

There are other words and phrases that have the same effect on truth-value as ‘and’, and which can 

therefore be represented with the dot: ‘although’, ‘however’, ‘moreover’, ‘in addition’, and so on. 

These can all be used to form conjunctions. 

 

There are fewer ways of forming disjunctions in English. Almost always, these feature the word 

‘or’, sometimes accompanied by ‘either’. Whenever we see ‘or’, we will translate it into SL as the 

wedge. As we discussed, the wedge captures the inclusive sense of ‘or’—one or the other, or both. 

The exclusive sense—one or the other, but not both—can also be rendered in SL, using a 

combination of symbols. ‘Hillary Clinton or Donald Trump will win the election, but not both’. 

How would we translate that into SL? Let ‘H’ stand for ‘Hillary Clinton will win’ and ‘D’ stand 

for ‘Donald Trump will win’. We know how to deal with the ‘or’ part: ‘Hillary Clinton will win 

or Donald Trump will win’ is just ‘H  D’. How about the ‘not both’ part? That’s the claim, 

paraphrasing slightly, that it’s not the case that both Hillary and Trump will win; that is, it’s the 

negation of the conjunction: ‘~ (H • D)’. So we have the ‘or’ part, and we have the ‘not both’ part; 

the only thing left is the word ‘but’ in between. We just learned how to deal with that! ‘But’ gets 

translated as a dot. So the proper SL translation of ‘Hillary Clinton or Donald Trump will win the 

election, but not both’ is this: 

 

(H  D) • ~ (H • D) 

 

Notice we had to enclose the disjunction, ‘H  D’, in parentheses. This is to remove ambiguity: 

without the parentheses, we wouldn’t know whether the wedge or the (middle) dot was the main 

operator, and so the construction would not have been well-formed. In SL, the exclusive sense of 

‘or’ is expressed with a conjunction: it conjoins the (inclusive) ‘or’ claim to the ‘not both’ claim—

one or the other, but not both. 

 

It is worth pausing to reflect on the symbolization of ‘not both’, and comparing it to a 

complementary locution—‘neither/nor’. We symbolize ‘not both’ in SL as a negated conjunction; 

‘neither/nor’ is a negated disjunction. The sentence ‘Neither Donald Trump nor Beyoncé will win 

the election’ would be rendered as ‘~ (D  B)’; that is, it’s not the case that either Donald or 

Beyoncé will win. 



Sentential Logic 139 

 

 

 

When we discussed the syntax of SL, it was useful to use and analogy to arithmetic to understand 

the interactions between tildes and parentheses. Taking that analogy too far in the case of negated 

conjunctions and disjunctions can lead us into error. The following is true in arithmetic: 

 

- (2 + 5) = -2 + -5 

 

We can distribute the minus-sign inside the parentheses (it’s just multiplying by -1). The following, 

however, are not true in logic9: 

 

~ (p • q)  ~ p • ~ q  [WRONG] 

~ (p  q)  ~ p  ~ q  [WRONG] 

 

The tilde cannot be distributed inside the parentheses in these cases. For each, the left- and right-

hand components have different meanings. To see why, we should think about some concrete 

examples. Let ‘R’ stand for ‘Donald Trump is rich’ and ‘G’ stand for ‘Donald Trump is generous’. 

‘~ (R • G)’ symbolizes the claim that Trump is not both rich and generous. Notice that this claim 

is compatible with his actually being rich, but not generous, and also with his being generous, but 

not rich. The claim is just that he’s not both. Now consider the claim that ‘~ R • ~ G’ symbolizes. 

The main operator in that sentence is the dot; it’s a conjunction. Conjunctions make a commitment 

to the truth of each of their conjuncts. The conjuncts in this case symbolize the sentences ‘Trump 

is not rich’ and ‘Trump is not generous’. That is, this conjunction is committed to Trump’s lacking 

both richness and generosity. That is a stronger claim than saying he’s not both: if you say he’s 

not both, that’s compatible with him being one or the other; ‘~ R • ~ G’, on the other hand, insists 

that both are ruled out. So, generally speaking, a negated conjunction makes a different (weaker) 

claim than the conjunction of two negations. 

 

There is also a difference between a negated disjunction and the disjunction of two negations. 

Consider ‘~ (R  G)’. That symbolizes the sentence ‘Trump is neither rich nor generous’. In other 

words, he lacks both richness and generosity. That’s a much stronger claim that the one symbolized 

by ‘~ R  ~ G’—the disjunction ‘Either Trump isn’t rich or he isn’t generous’. He lacks one or the 

other quality (or both; the disjunction is inclusive). That’s compatible with his actually being rich, 

but not generous; it’s also compatible with his being generous, but not rich. 

 

Did you notice what happened there? I used the same language to describe the claim symbolized 

by ‘~ (R • G)’ and ‘~ R  ~ G’. Both merely assert that he isn’t both rich and generous; he may be 

one or the other. I also described the claims made by ‘~ (R  G)’ and ‘~ R • ~ G’ the same way. 

Both make the stronger claim that he lacks both characteristics. This is true in general: negated 

conjunctions are equivalent to the disjunction of two negations; and negated disjunctions are 

equivalent to the conjunction of two negations. The following logical equivalences are true10: 

 

                                                 
9 The triple-bar is a logical equals-sign; it indicates that the components have the same truth-conditions (meaning). 
10 They’re often referred to as “DeMorgan’s Laws,” after the nineteenth century English logician Augustus DeMorgan, 

who was apparently the first to formulate in the terms of the modern formal system developed by his fellow 

countryman and contemporary, George Boole. DeMorgan didn’t discover these equivalences, however. They have 

been known to logicians since the ancient Greeks. 
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~ (p • q)  ~ p  ~ q 

~ (p  q)  ~ p • ~ q 

 

If you want to distribute that tilde inside the parentheses (or, alternatively, moving from right to 

left, pull the tilde outside), you have to change the wedge to a dot (and vice versa). 

 

Horseshoe and Triple-Bar 

 

There are many English locutions that we can symbolize using the horseshoe and the triple-bar—

especially the horseshoe. In fact, as we shall see, it’s possible to render claims translated with the 

triple-bar using the horseshoe instead (along with a dot). We will look at a representative sample 

of the many ways in which conditionals and biconditionals can be expressed in English, and talk 

about how to translate them into SL using the horseshoe and triple-bar. 

 

The canonical presentation of a conditional uses the words ‘if’ and ‘then’, as in ‘If the Democrats 

win back Congress, then a lot of new legislation will be passed’. But the word ‘then’ isn’t really 

necessary: ‘If the Democrats win back Congress, a lot of new legislation will be passed’ makes 

the same assertion. It would also be symbolized as ‘D  L’ (with ‘D’ and ‘L’ standing for the 

obvious simple components). The word ‘if’ can also be replaced. ‘Provided the Democrats win 

back Congress, a lot of new legislation will be passed’ also makes the same claim. 

 

Things get tricky if we vary the placement of the ‘if’. Putting it in the middle of sentence, we get 

‘Your pain will go away if you drink this herbal tea every day for a week’, for example. Compare 

that sentence to the one we considered earlier: ‘If you drink this herbal tea every day for a week, 

then your pain will go away’. Read one, then the other. They make the same claim, don’t they? 

Rule of thumb: whatever follows the word ‘if’, when ‘if’ occurs on its own (without the word 

‘only’; see below), is the antecedent of the conditional. We would translate both of these sentences 

as something like ‘D  P’ (where ‘D’ is for drinking the tea, and ‘P’ is for the pain going away). 

 

The word ‘only’ changes things. Consider: ‘I will win the lottery only if I have a ticket’. A sensible 

claim, obviously true. I’m suggesting this is a conditional. Let ‘W’ stand for ‘I win the lottery’ and 

‘T’ stand for ‘I have a ticket’. Which is the antecedent and which is the consequent? Which of 

these two symbolizations is correct: 

 

T  W 

 

or  

 

W  T 

 

To figure it out, let’s read them back into English as canonical ‘if/then’ claims. The first says, “If 

I have a ticket, then I’ll win the lottery.” Well, that’s optimistic! But clearly false—something only 

a fool would believe. That can’t be the correct way to symbolize our original, completely sensible 

claim that I will win only if I have a ticket. So it must be the second symbolization, which says 

that if I did win the lottery, then I had a ticket. That’s better. Generally speaking, the component 
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occurring before ‘only if’ is the antecedent of a conditional, and the component occurring after is 

the consequent.  

 

The claim in the last example can be put differently: having a ticket is a necessary condition for 

winning the lottery. We use the language of “necessary and sufficient conditions” all the time. We 

symbolize these locutions with the horseshoe. For example, being at least 16 years old is a 

necessary condition for having a driver’s license (in most states). Let ‘O’ stand for ‘I am at least 

16 years old’ and ‘D’ stand for ‘I have a driver’s license. ‘D  O’ symbolizes the sentence claiming 

that O is necessary for D. The opposite won’t work: ‘O  D’, if we read it back, says “If I’m at 

least 16 years old, then I have a driver’s license.” But that’s not true. Plenty of 16-year-olds don’t 

get a license. There are additional conditions besides age: passing the test, being physically able 

to drive, etc. 

 

Another way of putting that point: being at least 16 years old is not a sufficient condition for having 

a driver’s license; it’s not enough on its own. An example of a sufficient condition: getting 100% 

on every test is a sufficient condition for getting an A in a class (supposing tests are the only 

evaluations). That is, if you get 100% on every test, then you’ll get an A. If ‘H’ stands for ‘I got 

100% on all the tests’ and ‘A’ stands for ‘I got an A in the class’, then we would indicate that H is 

a sufficient condition for A in SL by writing ‘H  A’. Notice that it’s not a necessary condition: 

you don’t have to be perfect to get an A. ‘A  H’ would symbolize a falsehood. 

 

To define a concept is to provide necessary and sufficient conditions for falling under it. For 

example, a bachelor is, by definition, an unmarried male. That is, being an unmarried male is 

necessary and sufficient for being a bachelor: you don’t qualify as a bachelor is you’re not an 

unmarried male, and being an unmarried male is enough, on its own, to qualify for bachelorhood. 

It’s for circumstances like this that we have the triple-bar. Recall, the phrase that triple-bar is meant 

to capture the meaning of is ‘if and only if’. We’re now in a position to understand that locution. 

Consider the claim that I am a bachelor if and only if I am an unmarried male. This is really a 

conjunction of two claims: I am a bachelor if I’m an unmarried male, and I’m a bachelor only if 

I’m an unmarried male. Let ‘B’ stand for ‘I’m a bachelor’ and ‘U’ stand for ‘I’m an unmarried 

male. Our claim is then B if U, and B only if U. We know how to deal with ‘if’ on its own between 

two sentences: the one after the ‘if’ is the antecedent of the conditional. And we know how to deal 

with ‘only if’: the sentence before it is the antecedent, and the sentence after it is the consequent. 

To symbolize ‘I am a bachelor if and only if I am an unmarried male’ using horseshoes and a dot, 

we get this: 

 

(U  B) • (B  U) 

 

The left-hand conjunct is the ‘if’ part; the right-hand conjunct is the ‘only if’ part. The purpose of 

the triple-bar is to give us a way of symbolizing such claims more easily, with a single symbol. ‘I 

am a bachelor if and only if I am an unmarried male’ can be translated into SL as ‘B  L’, which 

is just shorthand for the longer conjunction of conditionals above. And given that ‘necessary and 

sufficient’ is also just a conjunction of two conditionals, we use triple-bar for that locution as well. 

(Also, the phrase ‘just in case’ can be used to express a biconditional claim.) 
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At this point, you may have an objection: why include triple-bar in SL at all, if it’s dispensable in 

favor of a dot and a couple of horseshoes? Isn’t it superfluous? Well, yes and no. We could do 

without it, but having it makes certain translations easier. As a matter of fact, this is the case for 

all of our symbols. It’s always possible to replace them with combinations of others. Consider the 

horseshoe. It’s false when the antecedent is true and the consequent false, true otherwise. So really, 

it’s just a claim that it’s not the case that the antecedent is true and the conclusion false—a negated 

conjunction. We could replace any p  q with ~ (p • ~ q). And the equivalences we saw earlier—

DeMorgan’s Laws—show us how we can replace dots with wedges and vice versa. It’s a fact (I 

won’t prove it; take my word for it) that we could get by with only two symbols in our language: 

tilde and any one of wedge, dot, or horseshoe.11 So yeah, we have more symbols than we need, 

strictly speaking. But it’s convenient to have the number of symbols that we do, since they line up 

neatly with English locutions, making translation between English and SL much easier than it 

would be otherwise. 

 

 

EXERCISES 

 

Translate the following into SL, using the bolded capital letters to stand for simple sentences. 

 

1.  Harry Lime is a Criminal, but he’s not a Monster. 

 

2.  If Thorwald didn’t kill his wife, then Jeffries will look foolish. 

 

3.  Rosemary doesn’t love both Max and Herman. 

 

4.  Michael will not Kill Fredo if his Mother is still alive. 

 

5.  Neither Woody nor Buzz could defeat Zurg, but Rex could. 

 

6.  If either Fredo or Sonny takes over the family, it will be a Disaster. 

 

7.  Eli will get rich only if Daniel doesn’t drink his milkshake. 

 

8.  Writing a hit Play is necessary for Rosemary to fall in Love with Max. 

 

9.  Kane didn’t Win the election, but if the opening of the Opera goes well he’ll regain his Dignity. 

 

10.  If Dave flies into the Monolith, then he’ll have a Transformative experience; but if he doesn’t 

fly into the Monolith, he will be stuck on a Ghost ship. 

 

                                                 
11 In fact, it’s possible to get by with only one symbol: if we defined a new two-place operator that’s true when both 

components are false, and false otherwise, that would do the trick. The symbol typically used for this truth-function 

is ‘|’, called the “Sheffer stroke” after the logician (Henry Sheffer) who first published this result. 
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11.  Kane wants Love if and only if he gets it on his own Terms. 

 

12.  Either Henry keeps his Mouth shut and goes to Jail for a long time or he Rats on his friends 

and lives the rest of his life like a Schnook. 

 

13.  Only if Herman builds an Aquarium will Rosemary Love him. 

 

14.  Killing Morrie is sufficient for keeping him Quiet. 

 

15.  Jeffries will be Vindicated, provided Thorwald Killed his wife and Doyle Admits he was 

right all along. 

 

16. Collaborating with Cecil B. DeMille is necessary to Revive Norma’s career, and if she does 

not Collaborate with DeMille, Norma may go Insane. 

 

17. Either Daniel or Eli will get the oil, but not both. 

 

18. To have a Fulfilling life as a toy, it is necessary, but not sufficient, to be Played with by 

children. 

 

19. The Dude will get Rich if Walter’s Plan works, and if the Dude gets Rich, he’ll buy a new 

Bowling ball and a new Carpet. 

 

20. Either the AE-35 Unit is really malfunctioning or HAL has gone Crazy; and if HAL has gone 

Crazy, then the Mission will be a failure and neither Dave nor Frank will ever get home. 

 

 

V.  Testing for Validity in SL 
 

Having dealt with the task of taming natural language, we are finally in a position to complete the 

second and third steps of building a logic: defining logical form and developing a test for validity. 

The test will involve applying skills that we’ve already learned: setting up truth tables and 

computing the truth-values of compounds. First, we must define logical form in SL. 

 

Logical Form in SL 

 

This will seem trivial, but it is necessary. We’re learning how to evaluate arguments expressed in 

SL. Like any evaluation of deductive arguments, the outcome hinges on the argument’s form. So 

what is the form of an SL argument? Let’s consider an example; here is an argument in SL: 

 

A  B 

~ B 

/ ~ A 
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‘A’ and ‘B’ stand for simple sentences in English; we don’t care which ones. We’re working within 

SL: given an argument in this language, how do we determine its form? Quite simply, by 

systematically replacing capital letters with variables (lower-case letters like ‘p’, ‘q’, and ‘r’). The 

form of that particular SL argument is this: 

 

p  q 

~ q 

/ ~ p 

 

The replacement of capital letters with lower-case variables was systematic in this sense: each 

occurrence of the same capital letter (e.g., ‘A’) was replaced with the same variable (e.g., ‘p’). 

 

To generate the logical form of an SL argument, what we do is systematically replace SL sentences 

with what we’ll call sentence-forms. An SL sentence is just a well-formed combination of SL 

symbols—capital letters, operators, and parentheses. A sentence-form is a combination of symbols 

that would be well-formed in SL, except that it has lower-case variables instead of capital letters. 

 

Again, this may seem like a trivial change, but it is necessary. Remember, when we’re testing an 

argument for validity, we’re checking to see whether its form is such that it’s possible for its 

premises to turn out true and its conclusion false. This means checking various ways of filling in 

the form with particular sentences. Variables—as the name suggests—can vary in the way we 

need: they are generic and can be replaced with any old particular sentence. Actual SL 

constructions feature capital letters, which are actual sentences having specific truth-values. It is 

conceptually incoherent to speak of checking different possibilities for actual sentences. So we 

must switch to sentence-forms. 

 

The Truth Table Test for Validity 

 

To test an SL argument for validity, we identify its logical form, then create a truth table with 

columns for each of the variables and sentence-forms in the argument’s form. Filling in columns 

of Ts and Fs under each of the operators in those sentence-forms will allow us to check for what 

we’re looking for: an instance of the argument’s form for which the premises turn out true and the 

conclusion turns out false. Finding such an instance demonstrates the argument’s invalidity, while 

failing to find one demonstrates its validity. 

 

To see how this works, it will be useful to work through an example. Consider the following 

argument in English: 

 

If Democrats take back Congress, lots of new laws will be passed. 

Democrats won’t take back Congress. 

/ Lots of new laws won’t be passed. 

 

We’ll evaluate it by first translating it into SL. Let ‘D’ stand for ‘Democrats take back Congress’ 

and ‘L’ stand for ‘Lots of new laws will be passed’. This is the argument in SL: 
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D  L 

~ D 

/ ~ L 

 

First, the logical form. Replacing ‘D’ with ‘p’ and ‘L’ with ‘q’, we get: 

 

p  q 

~ p 

/ ~ q 

 

Now we set up a truth table, with columns for each of the variables and columns for each of the 

sentence-forms. To determine how many rows our table needs, we note the number of different 

variables that occur in the argument-form (call that number ‘n’); the table will need 2n rows. In 

this case, we have two variables—‘p’ and ‘q’—and so we need 22 = 4 rows. (If there were three 

variables, we would need 23 = 8 rows; if there were four, 24 = 16; and so on.) Here is the table we 

need to fill in for this example: 

 

 

p q  p  q  ~ p   ~ q   

     

     

     

     

 

First, we fill in the “base columns”. These are the columns for the variables. We do this 

systematically. Start with the right-most column (under ‘q’ in this case), and fill in Ts and Fs 

alternately: T, F, T, F, T, F, … as many times as you need—until you’ve got a truth-value in every 

row. That gives us this: 

 

p q  p  q  ~ p   ~ q   

 T    

 F    

 T    

 F    

 

Next, we move to the base column to the left of the one we just filled in (under ‘p’ now), and fill 

in Ts and Fs by alternating in twos: T, T, F, F, T, T, F, F,… as many times as we need. The result 

is this: 
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p q  p  q  ~ p   ~ q   

T T    

T F    

F T    

F F    

 

If there were a third base column, we would fill in the Ts and Fs by alternating in fours: T, T, T, 

T, F, F, F, F…. For a fourth base column, we would alternate every other eight. And so on. 

 

Next, we need to fill in columns of Ts and Fs under each of the operators in the statement-forms’ 

columns. To do this, we apply our knowledge of how to compute the truth-values of compounds 

in terms of the values of their components, consulting the operators’ truth table definitions. We 

know how to compute the values of p  q: it’s false when p is true and q false; true otherwise. We 

know how to compute the values of ~ p and ~ q: those are just the opposites of the values of p and 

q in each of the rows. Making these computations, we fill the table in thus: 

 

p q  p  q  ~ p   ~ q   

T T     T  F  F 

T F     F  F  T 

F T     T  T  F 

F F     T  T  T 

 

Once the table is filled in, we check to see if we have a valid or invalid form. The mark of an 

invalid form is that it’s possible for the premises to be true and the conclusion false. Here, the rows 

of the table are the possibilities—the four possible outcomes of plugging in particular SL sentences 

for the variables: both true; the first is true, but the second false; the first false but the second true; 

both false. The reason we systematically fill in the base columns as described above is that the 

method ensures that our rows will collectively exhaust all these possible combinations.  

 

So, to see if it’s possible for the premises to come out true and the conclusion to come out false, 

we check each of the rows, looking for one in which this happens—one in which there’s a T under 

‘p  q’, a T under ‘~ p’, and an F under ‘~ q’. And we have one: in row 3, the premises come out 

true and the conclusion comes out false. This is enough to show that the argument is invalid: 

 

p q  p  q  ~ p   ~ q   

T T     T  F  F 

T F     F  F  T 

F T     T  T  F 

F F     T  T  T 

  

INVALID 
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When we’re checking for validity, we’re looking for one thing, and one thing only: a row (or rows) 

in which the premises come out true and the conclusion comes out false. If we find one, we have 

shown that the argument is invalid. If we don’t find one, that indicates that it’s impossible for the 

premises to be true and the conclusion false—and so the argument is valid. Either way, the only 

thing we look for is a row with true premises and a false conclusion. Every other kind of row is 

irrelevant. It’s common for beginners to mistakenly think they are. The fourth row in the table 

above, for example, looks significant. Everything comes out true in that row. Doesn’t that mean 

something—something good, like that the argument’s valid? No. Remember, each row represents 

a possibility; what row 4 shows is that it’s possible for the premises to be true and the conclusion 

true. But that’s not enough for validity. For an argument to be valid, the premises must guarantee 

the conclusion; whenever they’re true, the conclusion must be true. That it’s merely possible that 

they all come out true is not enough.  

 

Let’s look at a more involved example, to see how the computation of the truth-values of the 

statement-forms must sometimes proceed in stages. The skill required here is nothing new—it’s 

just identifying main operators and computing the values of the simplest components first—but it 

takes careful attention to keep everything straight. Consider this SL argument (never mind what 

its English counterpart is): 

 

(~ A • B)  ~ X 

B  A 

/ ~ X 

 

To get its form, we replace ‘A’ with ‘p’, ‘B’ with ‘q’, and ‘X’ with ‘r’: 

 

(~ p • q)  ~ r 

q  p 

/ ~ r 

 

So our truth-table will look like this (eight rows because we have three variables; 23 = 8): 

 

p q  r (~ p • q)  ~ r  q  p    ~ r   

      

      

      

      

      

      

      

      

 

Filling in the base columns as prescribed above—alternating every other one for the column under 

‘r’, every two under ‘q’, and every four under ‘p’—we get: 
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p q  r (~ p • q)  ~ r  q  p    ~ r   

T T T    

T T F    

T F T    

T F F    

F T T    

F T F    

F F T    

F F F    

 

Now we turn our attention to the three sentence-forms. We’ll start with the first premise, the 

compound ‘(~ p • q)  ~ r’. We need to compute the truth-value of this formula. We know how to 

do this, provided we have the truth-values of the simplest parts; we’ve solved problems like that 

already. The only difference in the case of truth tables is that there are multiple different 

assignments of truth-values to the simplest parts. In this case, there are eight different ways of 

assigning truth-values to ‘p’, ‘q’, and ‘r’; those are represented by the eight different rows of the 

table. So we’re solving a problem we know how to solve; we’re just doing it eight times. 

 

We start by identifying the main operator of the compound formula. In this case, it’s the wedge: 

we have a disjunction; the left-hand disjunct is ‘(~ p • q)’, and the right-hand disjunct is ‘~ r’. To 

figure out what happens under the wedge in our table, we must first figure out the values of these 

components. Both disjuncts are themselves compound: ‘(~ p • q)’ is a conjunction, and ‘~ r’ is a 

negation. Let’s tackle the conjunction first. To figure out what happens under the dot, we need to 

know the values of ‘~ p’ and ‘q’. We know the values of ‘q’; that’s one of the base columns. We 

must compute the value of ‘~ p’. That’s easy: in each row, the value of ‘~ p’ will just be the 

opposite of the value of ‘p’. We note the values under the tilde, the operator that generates them: 

 

p q  r (~ p • q)  ~ r  q  p    ~ r   

T T T   F   

T T F   F   

T F T   F   

T F F   F   

F T T   T   

F T F   T   

F F T   T   

F F F   T   

 

To compute the value of the conjunction, we consider the result, in each row, of the truth-function 

for dot, where the inputs are the value under the tilde in ‘~ p’ and the value under ‘q’ in the base 

column. In rows 1 and 2, it’s F • T; in rows 3 and 4, F • F; and so on. The results: 

 



Sentential Logic 149 

 

 

p q  r (~ p • q)  ~ r  q  p    ~ r   

T T T   F    F   

T T F   F    F   

T F T   F    F   

T F F   F    F   

F T T   T    T   

F T F   T    T   

F F T   T    F   

F F F   T    F   

 

The column we just produced, under the dot, gives us the range of truth-values for the left-hand 

disjunct in the first premise. We need the values of the right-hand disjunct. That’s just ‘~ r’, which 

is easy to compute: it’s just the opposite value of ‘r’ in every row: 

 

p q  r (~ p • q)  ~ r  q  p    ~ r   

T T T   F    F        F   

T T F   F    F        T   

T F T   F    F        F   

T F F   F    F        T   

F T T   T    T        F   

F T F   T    T        T   

F F T   T    F        F   

F F F   T    F        T   

 

Now we can finally determine the truth-values for the whole disjunction. We compute the value 

of the wedge’s truth-function, where the inputs are the columns under the dot, on the one hand, 

and the tilde from ‘~ r’ on the other. F  F, F  T, F  F, and so on: 

 

p q  r (~ p • q)  ~ r  q  p    ~ r   

T T T   F    F     F F   

T T F   F    F     T T   

T F T   F    F     F F   

T F F   F    F     T T   

F T T   T    T     T F   

F T F   T    T     T T   

F F T   T    F     F  F   

F F F   T    F     T T   
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Since that column represents the range of possible values for the entire sentence-form, we highlight 

it. When we test for validity, we’re looking for rows where the premises as a whole come out true; 

we’ll be looking for the value under their main operators. To make that easier, just so we don’t 

lose track of things visually because of all those columns, we highlight the one under the main 

operator. 

 

Next, the second premise, which is thankfully much less complex. It is, however, slightly tricky. 

We need to compute the value of a conditional here. But notice that things are a bit different than 

usual: the antecedent, ‘q’, has its base column to the right of the column for the consequent, ‘p’. 

That’s a bit awkward. We’re used to computing conditionals from left-to-right; we’ll have to 

mentally adjust to the fact that ‘q  p’ goes from right-to-left. (Alternatively, if it helps, you can 

simply reproduce the base columns underneath the variables in the ‘q  p’ column.) So in the first 

two rows, we compute T  T; but in rows 3 and 4, it’s F  T; in rows 5 and 6, it’s T  F (the only 

circumstance in which conditionals turn out false); an in rows 7 and 8, it’s F  F. Here is the result: 

 

p q  r (~ p • q)  ~ r  q  p    ~ r   

T T T   F    F     F F     T  

T T F   F    F     T T     T  

T F T   F    F     F F     T  

T F F   F    F     T T     T  

F T T   T    T     T F     F  

F T F   T    T     T T     F  

F F T   T    F     F  F     T  

F F F   T    F     T T     T  

 

No need to highlight that column, as it’s the only one we produced for that premise, so there can 

be no confusion. 

 

We finish the table by computing the values for the conclusion, which is easy: 

 

p q  r (~ p • q)  ~ r  q  p    ~ r   

T T T   F    F     F F     T  F 

T T F   F    F     T T     T  T 

T F T   F    F     F F     T  F 

T F F   F    F     T T     T  T 

F T T   T    T     T F     F  F 

F T F   T    T     T T     F  T 

F F T   T    F     F  F     T  F 

F F F   T    F     T T     T  T 

 



Sentential Logic 151 

 

 

Is the argument valid? We look for a row with true premises and a false conclusion. There are 

none. The only two rows in which both premises come out true are the second and the eighth, and 

in both we also have a true conclusion. It is impossible for the premises to be true and the 

conclusion false, so the argument is valid. 

 

So that is how we test arguments for validity in SL. It’s a straightforward procedure; the main 

source of error is simple carelessness. Go step by step, keep careful track of what you’re doing, 

and it should be easy. It’s worth noting that the truth table test is what logicians call a “decision 

procedure”: it’s a rule-governed process (an algorithm) that is guaranteed to answer your question 

(in this case: valid or invalid?) in a finite number of steps. It is possible to program a computer to 

run the truth table test on arbitrarily long SL arguments. This is comforting, since once one gets 

more than four variables or so, the process becomes unwieldy.  

 

 

EXERCISES 

 

Test the following arguments for validity. For those that are invalid, specify the row(s) that 

demonstrate the invalidity. 

 

1. ~ A, / ~ A  B 

 

2. A  B, ~ B, / ~ A 

 

3. A  B, ~ A, / ~ B 

 

4. ~ (A  B), A  B, / A • B 

 

5. ~ (A  B), ~ B  ~ A, / ~ (~ A  B) 

 

6. ~ B  A, ~ A, A  B, / ~ B 

 

7. A  (B • C), ~ B  ~ C, / ~ A 

 

8. ~ A  C, ~ B  ~ C, / A  C 

 

9. ~ A  (~ B • C), ~ (C  B)  A, / ~ C  ~ B 

 

10. A  B, B  C, ~ C, / ~ A 



 

 

CHAPTER 5 

 

Inductive Logic I: Arguments from Analogy 

and Causal Reasoning 
 

 

 

 

 

 

 

 

 

 

I.  Inductive Logics 
 

Back in Chapter 1, we made a distinction between deductive and inductive arguments. While 

deductive arguments attempt to provide premises that guarantee their conclusions, inductive 

arguments are less ambitious. They merely aim to provide premises that make the conclusion more 

probable. Because of this difference, it is inappropriate to evaluate deductive and inductive 

arguments by the same standards. We do not use the terms ‘valid’ and ‘invalid’ when evaluating 

inductive arguments: technically, they’re all invalid because their premises don’t guarantee their 

conclusions; but that’s not a fair evaluation, since inductive arguments don’t even pretend to try 

to provide such a guarantee. Rather, we say of inductive arguments that they are strong or weak—

the more probable the conclusion in light of the premises, the stronger the inductive argument; the 

less probable the conclusion, the weaker. These judgments can change in light of new information. 

Additional evidence may have the effect of making the conclusion more or less probable—of 

strengthening or weakening the argument. 

 

The topic of this chapter and the next will be inductive logic: we will be learning about the various 

types of inductive arguments and how to evaluate them. Inductive arguments are a rather motley 

bunch. They come in a wide variety of forms that can vary according to subject matter; they resist 

the uniform treatment we were able to provide for their deductive cousins. We will have to examine 

a wide variety of approaches—different inductive logics. While all inductive arguments have in 

common that they attempt to give their conclusions more probable, it is not always possible for us 

to make precise judgments about exactly how probable their conclusions are in light of their 
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premises. When that is the case, we will make relative judgments: this argument is stronger or 

weaker than that argument, though I can’t say how much stronger or weaker, precisely. Sometimes, 

however, it will be possible to render precise judgments about the probability of conclusions, so it 

will be necessary for us to acquire basic skills in calculating probabilities. With those in hand, we 

will be in a position to model an ideally rational approach to revising our judgments about the 

strength of inductive arguments in light of new evidence. In addition, since so many inductive 

arguments use statistics, it will be necessary for us to acquire a basic understanding of some 

fundamental statistical concepts. With these in hand, we will be in a position to recognize the most 

common types of statistical fallacies—mistakes and intentionally misleading arguments that use 

statistics to lead us astray. 

 

Probability and statistics will be the subject of the next chapter. In this chapter, we will look at two 

very common types of inductive reasoning: arguments from analogy and inferences involving 

causation. The former are quite common in everyday life; the latter are the primary methods of 

scientific and medical research. Each type of reasoning exhibits certain patterns, and we will look 

at the general forms analogical and causal arguments; we want to develop the skill of recognizing 

how particular instances of reasoning fit these general patterns. We will also learn how these types 

of arguments are evaluated. For arguments from analogy, we will identify the criteria that we use 

to make relative judgments about strength and weakness. For causal reasoning, we will compare 

the various forms of inference to identify those most likely to produce reliable results, and we will 

examine some of the pitfalls peculiar to each that can lead to errors. 

 

 

II.  Arguments from Analogy 

 

Analogical reasoning is ubiquitous in everyday life. We rely on analogies—similarities between 

present circumstances and those we’ve already experienced—to guide our actions. We use 

comparisons to familiar people, places, and things to guide our evaluations of novel ones. We 

criticize people’s arguments based on their resemblance to obviously absurd lines of reasoning.  

 

In this section, we will look at the various uses of analogical reasoning. Along the way, we will 

identify a general pattern that all arguments from analogy follow and learn how to show that 

particular arguments fit the pattern. We will then turn to the evaluation of analogical arguments: 

we will identify six criteria that govern our judgments about the relative strength of these 

arguments. Finally, we will look at the use of analogies to refute other arguments. 

 

The Form of Analogical Arguments 

 

Perhaps the most common use of analogical reasoning is to predict how the future will unfold 

based on similarities to past experiences. Consider this simple example. When I first learned that 

the movie The Wolf of Wall Street was coming out, I predicted that I would like it. My reasoning 

went something like this: 

 

The Wolf of Wall Street is directed by Martin Scorsese, and it stars Leonardo DiCaprio. 

Those two have collaborated several times in the past, on Gangs of New York, The Aviator, 
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The Departed, and Shutter Island. I liked each of those movies, so I predict that I will like 

The Wolf of Wall Street. 

 

Notice, first, that this is an inductive argument. The conclusion, that I will like The Wolf of Wall 

Street is not guaranteed by the premises; as a matter of fact, my prediction was wrong and I really 

didn’t care for the film. But our real focus here is on the fact that the prediction was made on the 

basis of an analogy. Actually, several analogies, between The Wolf of Wall Street, on the one hand, 

and all the other Scorsese/DiCaprio collaborations on the other. The new film is similar in 

important respects to the older ones; I liked all of those; so, I’ll probably like the new one. 

 

We can use this pattern of reasoning for more overtly persuasive purposes. Consider the following: 

 

Eating pork is immoral. Pigs are just as smart, cute, and playful as dogs and dolphins. 

Nobody would consider eating those animals. So why are pigs any different? 

 

That passage is trying to convince people not to eat pork, and it does so on the basis of analogy: 

pigs are just like other animals we would never eat—dogs and dolphins. 

 

Analogical arguments all share the same basic structure. We can lay out this form schematically 

as follows: 

 

a1, a2, …, an, and c all have P1, P2, …, Pk 

a1, a2, …, an all have Q 

/ c has Q 

 

This is an abstract schema, and it’s going to take some getting used to, but it represents the form 

of analogical reasoning succinctly and clearly. Arguments from analogy have two premises and a 

conclusion. The first premise establishes an analogy. The analogy is between some thing, marked 

‘c’ in the schema, and some number of other things, marked ‘a1’, ‘a2’, and so on in the schema. 

We can refer to these as the “analogues”. They’re the things that are similar, analogous to c. This 

schema is meant to cover every possible argument from analogy, so we do not specify a particular 

number of analogues; the last one on the list is marked ‘an’, where ‘n’ is a variable standing for 

any number whatsoever. There may be only one analogue; there may be a hundred. What’s 

important is that the analogues are similar to the thing designated by ‘c’. What makes different 

things similar? They have stuff in common; they share properties. Those properties—the 

similarities between the analogues and c—are marked ‘P1’, ‘P2’, and so on in the diagram. Again, 

we don’t specify a particular number of properties shared: the last is marked ‘Pk’, where ‘k’ is just 

another variable (we don’t use ‘n’ again, because the number of analogues and the number of 

properties can of course be different). This is because our schema is generic: every argument from 

analogy fits into the framework; there may be any number of properties involved in any particular 

argument. Anyway, the first premise establishes the analogy: c and the analogues are similar 

because they have various things in common—P1, P2, P3, …, Pk. 

 

Notice that ‘c’ is missing from the second premise. The second premise only concerns the 

analogues: it says that they have some property in common, designated ‘Q’ to highlight the fact 

that it’s not among the properties listed in the first premise. It’s a separate property. It’s the very 
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property we’re trying to establish, in the conclusion, that c has (‘c’ is for conclusion). The thinking 

is something like this: c and the analogues are similar in so many ways (first premise); the 

analogues have this additional thing in common (Q in the second premise); so, c is probably like 

that, too (conclusion: c has Q). 

 

It will be helpful to apply these abstract considerations to concrete examples. We have two in hand. 

The first argument, predicting that I would like The Wolf of Wall Street, fits the pattern. Here’s the 

argument again, for reference: 

 

The Wolf of Wall Street is directed by Martin Scorsese, and it stars Leonardo DiCaprio. 

Those two have collaborated several times in the past, on Gangs of New York, The Aviator, 

The Departed, and Shutter Island. I liked each of those movies, so I predict that I will like 

The Wolf of Wall Street. 

 

The conclusion is something like ‘I will like The Wolf of Wall Street’. Putting it that way, and 

looking at the general form of the conclusion of analogical arguments (c has Q), it’s tempting to 

say that ‘c’ designates me, while the property Q is something like ‘liking The Wolf of Wall Street’. 

But that’s not right. The thing that ‘c’ designates has to be involved in the analogy in the first 

premise; it has to be the thing that’s similar to the analogues. The analogy that this argument hinges 

on is between the various movies. It’s not I that ‘c’ corresponds to; it’s the movie we’re making 

the prediction about. The Wolf of Wall Street is what ‘c’ picks out. What property are we predicting 

it will have? Something like ‘liked by me’. The analogues, the a’s in the schema, are the other 

movies: Gangs of New York, The Aviator, The Departed, and Shutter Island. (In this example, n is 

4; the movies are a1, a2, a3, and a4.) These we know have the property Q (liked by me): I had 

already seen and liked these movies. That’s the second premise: that the analogues have Q. Finally, 

the first premise, which establishes the analogy among all the movies. What do they have in 

common? They were all directed by Martin Scorsese, and they all starred Leonardo DiCaprio. 

Those are the P’s—the properties they all share. P1 is ‘directed by Scorsese’; P2 is ‘stars DiCaprio’.  

 

The second argument we considered, about eating pork, also fits the pattern. Here it is again, for 

reference: 

 

Eating pork is immoral. Pigs are just as smart, cute, and playful as dogs and dolphins. 

Nobody would consider eating those animals. So why are pigs any different? 

 

Again, looking at the conclusion—‘Eating pork is immoral’—and looking at the general form of 

conclusions for analogical arguments—‘c has Q’—it’s tempting to just read off from the syntax of 

the sentence that ‘c’ stands for ‘eating pork’ and Q for ‘is immoral’. But that’s not right. Focus on 

the analogy: what things are being compared to one another? It’s the animals: pigs, dogs, and 

dolphins; those are our a’s and c. To determine which one is picked out by ‘c’, we ask which 

animal is involved in the conclusion. It’s pigs; they are picked out by ‘c’. So we have to paraphrase 

our conclusion so that it fits the form ‘c has Q’, where ‘c’ stands for pigs. Something like ‘Pigs 

shouldn’t be eaten’ would work. So Q is the property ‘shouldn’t be eaten’. The analogues are dogs 

and dolphins. They clearly have the property: as the argument notes, (most) everybody agrees they 

shouldn’t be eaten. This is the second premise. And the first establishes the analogy. What do pigs 
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have in common with dogs and dolphins? They’re smart, cute, and playful. P1 = ‘is smart’; P2 = 

‘is cute’; and P3 = ‘is playful’.  

 

The Evaluation of Analogical Arguments 

 

Unlike in the case of deduction, we will not have to learn special techniques to use when evaluating 

these sorts of arguments. It’s something we already know how to do, something we typically do 

automatically and unreflectively. The purpose of this section, then, is not to learn a new skill, but 

rather subject a practice we already know how to engage in to critical scrutiny. We evaluate 

analogical arguments all the time without thinking about how we do it. We want to achieve a 

metacognitive perspective on the practice of evaluating arguments from analogy; we want to think 

about a type of thinking that we typically engage in without much conscious deliberation. We want 

to identify the criteria that we rely on to evaluate analogical reasoning—criteria that we apply 

without necessarily realizing that we’re applying them. Achieving such metacognitive awareness 

is useful insofar as it makes us more self-aware, critical, and therefore effective reasoners. 

 

Analogical arguments are inductive arguments. They give us reasons that are supposed to make 

their conclusions more probable. How probable, exactly? That’s very hard to say. How probable 

was it that I would like The Wolf of Wall Street given that I had liked the other four 

Scorsese/DiCaprio collaborations? I don’t know. How probable is it that it’s wrong to eat pork 

given that it’s wrong to eat dogs and dolphins? I really don’t know. It’s hard to imagine how you 

would even begin to answer that question.  

 

As we mentioned, while it’s often impossible to evaluate inductive arguments by giving a precise 

probability of its conclusion, it is possible to make relative judgments about strength and 

weakness. Recall, new information can change the probability of the conclusion of an inductive 

argument. We can make relative judgments of like this: if we add this new information as a 

premise, the new argument is stronger/weaker than the old argument; that is, the new information 

makes the conclusion more/less likely. 

 

It is these types of relative judgments that we make when we evaluate analogical reasoning. We 

compare different arguments—with the difference being new information in the form of an added 

premise, or a different conclusion supported by the same premises—and judge one to be stronger 

or weaker than the other. Subjecting this practice to critical scrutiny, we can identify six criteria 

that we use to make such judgments.  

 

We’re going to be making relative judgments, so we need a baseline argument against which to 

compare others. Here is such an argument: 

 

Alice has taken four Philosophy courses during her time in college. She got an A in all 

four. She has signed up to take another Philosophy course this semester. I predict she will 

get an A in that course, too. 

 

This is a simple argument from analogy, in which the future is predicted based on past experience. 

It fits the schema for analogical arguments: the new course she has signed up for is designated by 

‘c’; the property we’re predicting it has (Q) is that it is a course Alice will get an A in; the analogues 
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are the four previous courses she’s taken; what they have in common with the new course (P1) is 

that they are also Philosophy classes; and they all have the property Q—Sally got an A in each. 

 

Anyway, how strong is the baseline argument? How probable is its conclusion in light of its 

premises? I have no idea. It doesn’t matter. We’re now going to consider tweaks to the argument, 

and the effect that those will have on the probability of the conclusion. That is, we’re going to 

consider slightly different arguments, with new information added to the original premises or 

changes to the prediction based on them, and ask whether these altered new arguments are stronger 

or weaker than the baseline argument. This will reveal the six criteria that we use to make such 

judgments. We’ll consider one criterion at a time. 

 

Number of Analogues 

 

Suppose we alter the original argument by changing the number of prior Philosophy courses Alice 

had taken. Instead of Alice having taken four philosophy courses before, we’ll now suppose she 

has taken 14. We’ll keep everything else about the argument the same: she got an A in all of them, 

and we’re predicting she’ll get an A in the new one. Are we more or less confident in the 

conclusion—the prediction of an A—with the altered premise? Is this new argument stronger or 

weaker than the baseline argument?  

 

It’s stronger! We’ve got Alice getting an A 14 times in a row instead of only four. That clearly 

makes the conclusion more probable. (How much more? Again, it doesn’t matter.) 

 

What we did in this case is add more analogues. This reveals a general rule: other things being 

equal, the more analogues in an analogical argument, the stronger the argument (and conversely, 

the fewer analogues, the weaker). The number of analogues is one of the criteria we use to evaluate 

arguments from analogy. 

 

Variety of Analogues 

 

You’ll notice that the original argument doesn’t give us much information about the four courses 

Alice succeeded in previously and the new course she’s about to take. All we know is that they’re 

all Philosophy courses. Suppose we tweak things. We’re still in the dark about the new course 

Alice is about to take, but we know a bit more about the other four: one was a course in Ancient 

Greek Philosophy; one was a course on Contemporary Ethical Theories; one was a course in 

Formal Logic; and the last one was a course in the Philosophy of Mind. Given this new 

information, are we more or less confident that she will succeed in the new course, whose topic is 

unknown to us? Is the argument stronger or weaker than the baseline argument? 

 

It is stronger. We don’t know what kind of Philosophy course Alice is about to take, but this new 

information gives us an indication that it doesn’t really matter. She was able to succeed in a wide 

variety of courses, from Mind to Logic, from Ancient Greek to Contemporary Ethics. This is 

evidence that Alice is good at Philosophy generally, so that no matter what kind of course she’s 

about to take, she’ll probably do well in it. 
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Again, this points to a general principle about how we evaluate analogical arguments: other things 

being equal, the more variety there is among the analogues, the stronger the argument (and 

conversely, the less variety, the weaker).  

 

Number of Similarities 

 

In the baseline argument, the only thing the four previous courses and the new course have in 

common is that they’re Philosophy classes. Suppose we change that. Our newly tweaked argument 

predicts that Alice will get an A in the new course, which, like the four she succeeded in before, 

is cross-listed in the Department of Religious Studies and covers topics in the Philosophy of 

Religion. Given this new information—that the new course and the four older courses were similar 

in ways we weren’t aware of—are we more or less confident in the prediction that Alice will get 

another A? Is the argument stronger or weaker than the baseline argument? 

 

Again, it is stronger. Unlike the last example, this tweak gives us new information both about the 

four previous courses and the new one. The upshot of that information is that they’re more similar 

than we knew; that is, they have more properties in common. To P1 = ‘is a Philosophy course’ we 

can add P2 = ‘is cross-listed with Religious Studies’ and P3 = ‘covers topics in Philosophy of 

Religion’. The more properties things have in common, the stronger the analogy between them. 

The stronger the analogy, the stronger the argument based on that analogy. We now know not just 

that Alice did well in not just in Philosophy classes—but specifically in classes covering the 

Philosophy of Religion; and we know that the new class she’s taking is also a Philosophy of 

Religion class. I’m much more confident predicting she’ll do well again than I was when all I knew 

was that all the classes were Philosophy; the new one could’ve been in a different topic that she 

wouldn’t have liked. 

 

General principle: other things being equal, the more properties involved in the analogy—the more 

similarities between the item in the conclusion and the analogues—the stronger the argument (and 

conversely, the fewer properties, the weaker). 

 

Number of Differences 

 

An argument from analogy is built on the foundation of the similarities between the analogues and 

the item in the conclusion—the analogy. Anything that weakens that foundation weakens the 

argument. So, to the extent that there are differences among those items, the argument is weaker. 

 

Suppose we add new information to our baseline argument: the four Philosophy courses Alice did 

well in before were all courses in the Philosophy of Mind; the new course is about the history of 

Ancient Greek Philosophy. Given this new information, are we more or less confident that she will 

succeed in the new course? Is the argument stronger or weaker than the baseline argument? 

Clearly, the argument is weaker. The new course is on a completely different topic than the other 

ones. She did well in four straight Philosophy of Mind courses, but Ancient Greek Philosophy is 

quite different. I’m less confident that she’ll get an A than I was before. 

 

If I add more differences, the argument gets even weaker. Supposing the four Philosophy of Mind 

courses were all taught by the same professor (the person in the department whose expertise is in 
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that area), but the Ancient Greek Philosophy course is taught by someone different (the 

department’s specialist in that topic). Different subject matter, different teachers: I’m even less 

optimistic about Alice’s continued success. 

 

Generally speaking, other things being equal, the more differences there are between the analogues 

and the item in the conclusion, the weaker the argument from analogy. 

 

Relevance of Similarities and Differences 

 

Not all similarities and differences are capable of strengthening or weakening an argument from 

analogy, however. Suppose we tweak the original argument by adding the new information that 

the new course and the four previous courses all have their weekly meetings in the same campus 

building. This is an additional property that the courses have in common, which, as we just saw, 

other things being equal, should strengthen the argument. But other things are not equal in this 

case. That’s because it’s very hard to imagine how the location of the classroom would have 

anything to do with the prediction we’re making—that Alice will get an A in the course. Classroom 

location is simply not relevant to success in a course.1 Therefore, this new information does not 

strengthen the argument. Nor does it weaken it; I’m not inclined to doubt Alice will do well in 

light of the information about location. It simply has no effect at all on my appraisal of her chances. 

 

Similarly, if we tweak the original argument to add a difference between the new class and the 

other four, to the effect that while all of the four older classes were in the same building, while the 

new one is in a different building, there is no effect on our confidence in the conclusion. Again, 

the building in which a class meets is simply not relevant to how well someone does. 

 

Contrast these cases with the new information that the new course and the previous four are all 

taught by the same professor. Now that strengthens the argument! Alice has gotten an A four times 

in a row from this professor—all the more reason to expect she’ll receive another one. This tidbit 

strengthens the argument because the new similarity—the same person teaches all the courses—is 

relevant to the prediction we’re making—that Alice will do well. Who teaches a class can make a 

difference to how students do—either because they’re easy graders, or because they’re great 

teachers, or because the student and the teacher are in tune with one another, etc. Even a difference 

between the analogues and the item in the conclusion, with the right kind of relevance, can 

strengthen an argument. Suppose the other four philosophy classes were taught be the same 

teacher, but the new one is taught by a TA—who just happens to be her boyfriend. That’s a 

difference, but one that makes the conclusion—that Alice will do well—more probable. 

 

Generally speaking, careful attention must be paid to the relevance of any similarities and 

differences to the property in the conclusion; the effect on strength varies. 

 

Modesty/Ambition of the Conclusion 

 

Suppose we leave everything about the premises in the original baseline argument the same: four 

Philosophy classes, an A in each, new Philosophy class. Instead of adding to that part of the 

                                                 
1 I’m sure someone could come up with some elaborate backstory for Alice according to which the location of the 

class somehow makes it more likely that she will do well, but set that aside. No such story is on the table here. 
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argument, we’ll tweak the conclusion. Instead of predicting that Alice will get an A in the class, 

we’ll predict that she’ll pass the course. Are we more or less confident that this prediction will 

come true? Is the new, tweaked argument stronger or weaker than the baseline argument? 

 

It’s stronger. We are more confident in the prediction that Alice will pass than we are in the 

prediction that she will get another A, for the simple reason that it’s much easier to pass than it is 

to get an A. That is, the prediction of passing is a much more modest prediction than the prediction 

of an A. 

 

Suppose we tweak the conclusion in the opposite direction—not more modest, but more ambitious. 

Alice has gotten an A in four straight Philosophy classes, she’s about to take another one, and I 

predict that she will do so well that her professor will suggest that she publish her term paper in 

one of the most prestigious philosophical journals and that she will be offered a three-year research 

fellowship at the Institute for Advanced Study at Princeton University. That’s a bold prediction! 

Meaning, of course, that it’s very unlikely to happen. Getting an A is one thing; getting an 

invitation to be a visiting scholar at one of the most prestigious academic institutions in the world 

is quite another. The argument with this ambitious conclusion is weaker than the baseline 

argument. 

 

General principle: the more modest the argument’s conclusion, the stronger the argument; the more 

ambitious, the weaker. 

 

Refutation by Analogy 

 

We can use arguments from analogy for a specific logical task: refuting someone else’s argument, 

showing that it’s bad. Recall the case of deductive arguments. To refute those—to show that they 

are bad, i.e., invalid—we had to produce a counterexample—a new argument with the same logical 

form as the original that was obviously invalid, in that its premises were in fact true and its 

conclusion in fact false. We can use a similar procedure to refute inductive arguments. Of course, 

the standard of evaluation is different for induction: we don’t judge them according to the black 

and white standard of validity. And as a result, our judgments have less to do with form than with 

content. Nevertheless, refutation along similar lines is possible, and analogies are the key to the 

technique. 

 

To refute an inductive argument, we produce a new argument that’s obviously bad—just as we did 

in the case of deduction. We don’t have a precise notion of logical form for inductive arguments, 

so we can’t demand that the refuting argument have the same form as the original; rather, we want 

the new argument to have an analogous form to the original. The stronger the analogy between 

the refuting and refuted arguments, the more decisive the refutation. We cannot produce the kind 

of knock-down refutations that were possible in the case of deductive arguments, where the 

standard of evaluation—validity—does not admit of degrees of goodness or badness, but the 

technique can be quite effective. 

 

Consider the following: 
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“Duck Dynasty” star and Duck Commander CEO Willie Robertson said he supports Trump 

because both of them have been successful businessmen and stars of reality TV shows. 

 

By that logic, does that mean Hugh Hefner’s success with “Playboy” and his occasional 

appearances on “Bad Girls Club” warrant him as a worthy president? Actually, I’d still be 

more likely to vote for Hefner than Trump.2 

 

The author is refuting the argument of Willie Robertson, the “Duck Dynasty” star. Robertson’s 

argument is something like this: Trump is a successful businessman and reality TV star; therefore, 

he would be a good president. To refute this, the author produces an analogous argument—Hugh 

Hefner is a successful businessman and reality TV star; therefore, Hugh Hefner would make a 

good president—that he regards as obviously bad. What makes it obviously bad is that it has a 

conclusion that nobody would agree with: Hugh Hefner would make a good president. That’s how 

these refutations work. They attempt to demonstrate that the original argument is lousy by showing 

that you can use the same or very similar reasoning to arrive at an absurd conclusion. 

 

Here’s another example, from a group called “Iowans for Public Education”. Next to a picture of 

an apparently well-to-do lady is the following text: 

 

“My husband and I have decided the local parks just aren’t good enough for our kids. We’d 

rather use the country club, and we are hoping state tax dollars will pay for it. We are 

advocating for Park Savings Accounts, or PSAs. We promise to no longer use the local 

parks. To hell with anyone else or the community as a whole. We want our tax dollars to 

be used to make the best choice for our family.” 

 

Sound ridiculous? Tell your legislator to vote NO on Education Savings Accounts (ESAs), 

aka school vouchers. 

 

The argument that Iowans for Public Education put in the mouth of the lady on the poster is meant 

to refute reasoning used by advocates for “school choice”, who say that they ought to have the 

right to opt out of public education and keep the tax dollars they would otherwise pay for public 

schools and use it to pay to send their kids to private schools. A similar line of reasoning sounds 

pretty crazy when you replace public schools with public parks and private schools with country 

clubs. 

 

Since these sorts of refutations rely on analogies, they are only as strong as the analogy between 

the refuting and refuted arguments. There is room for dispute on that question. Advocates for 

school vouchers might point out that schools and parks are completely different things, that schools 

are much more important to the future prospects of children, and that given the importance of 

education, families should have to right choose what they think is best. Or something like that. 

The point is, the kinds of knock-down refutations that were possible for deductive arguments are 

not possible for inductive arguments. There is always room for further debate. 

 

 

                                                 
2 Austin Faulds, “Weird celebrity endorsements fit for weird election,” Indiana Daily Student, 10/12/16, 

http://www.idsnews.com/article/2016/10/weird-celebrity-endorsements-for-weird-election. 
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EXERCISES 

 

1. Show how the following arguments fit the abstract schema for arguments from analogy: 

 

a1, a2, …, an, and c all have P1, P2, …, Pk 

a1, a2, …, an all have Q___________________ 

/ c has Q 

 

(a) You should really eat at Papa Giorgio’s; you’ll love it. It’s just like Mama DiSilvio’s 

and Matteo’s, which I know you love: they serve old-fashioned Italian-American food, 

they have a laid-back atmosphere, and the wine list is extensive. 

 

(b) George R.R. Martin deserves to rank among the greats in the fantasy literature genre. 

Like C.S. Lewis and J.R.R. Tolkien before him, he has created a richly detailed world, 

populated it with compelling characters, and told a tale that is not only exciting, but which 

features universal and timeless themes concerning human nature. 

 

(c) Yes, African Americans are incarcerated at higher rates than whites. But blaming this 

on systemic racial bias in the criminal justice system is absurd. That’s like saying the NBA 

is racist because there are more black players than white players, or claiming that the 

medical establishment is racist because African Americans die young more often. 

 

2. Consider the following base-line argument: 

 

I’ve taken vacations to Florida six times before, and I’ve enjoyed each visit. I’m planning 

to go to Florida again this year, and I fully expect yet another enjoyable vacation. 

 

Decide whether each of the following changes produces an argument that’s weaker or stronger 

than the baseline argument, and indicate which of the six criteria for evaluating analogical 

arguments justifies that judgment. 

 

(a) All of my trips were visits to Disney World, and this one will be no different. 

(b) In fact, I’ve vacationed in Florida 60 times and enjoyed every visit. 

(c) I expect that I will enjoy this trip so much I will decide to move to Florida. 

(d) On my previous visits to Florida, I’ve gone to the beaches, the theme parks, the 

Everglades National Park, and various cities, from Jacksonville to Key West. 

(e) I’ve always flown to Florida on Delta Airlines in the past; this time I’m going on a 

United flight. 

(f) All of my past visits were during the winter months; this time I’m going in the summer. 

(g) I predict that I will find this trip more enjoyable than a visit to the dentist. 

(h) I’ve only been to Florida once before. 
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(i) On my previous visits, I drove to Florida in my Dodge minivan, and I’m planning on 

driving the van down again this time. 

(j) All my visits have been to Daytona Beach for the Daytona 500; same thing this time. 

(k) I’ve stayed in beachside bungalows, big fancy hotels, time-share condominiums—even 

a shack out in the swamp. 

 

3. For each of the following passages, explicate the argument being refuted and the argument or 

arguments doing the refuting. 

 

(a) Republicans tell us that, because at some point 40 years from now a shortfall in revenue 

for Social Security is projected, we should cut benefits now. Cut them now because we 

might have to cut them in the future? I’ve got a medium-sized tree in my yard. 40 years 

from now, it may grow so large that its branches hang over my roof. Should I chop it down? 

 

(b) Opponents of gay marriage tell us that it flies in the face of a tradition going back 

millennia, that marriage is between a man and a woman. There were lots of traditions that 

lasted a long time: the tradition that it was OK for some people to own other people as 

slaves, the tradition that women couldn’t participate in the electoral process—the list goes 

on. That it’s traditional doesn’t make it right. 

 

(c) Some people claim that their children should be exempted from getting vaccinated for 

common diseases because the practice conflicts with their religious beliefs. But religion 

can’t be used to justify just anything. If a Satanist tried to defend himself against charges 

of abusing children by claiming that such practices were a form of religious expression, 

would we let him get away with it? 

 

 

III.  Causal Reasoning 

 

Inductive arguments are used to support claims about cause and effect. These arguments come in 

a number of different forms. The most straightforward is what is called enumerative induction. 

This is an argument that makes a (non-hasty) generalization, inferring that one event or type of 

event causes another on the basis of a (large) number of particular observations of the cause 

immediately preceding the effect. To use a very famous example (from the history of philosophy, 

due to David Hume, the 18th century Scottish philosopher who had much to say about cause and 

effect and inductive reasoning), we can infer from observations of a number of billiard-ball 

collisions that the first ball colliding with the second causes the second ball to move. Or we can 

infer from a number of observations of drunkenness following the consumption of alcoholic 

beverages that imbibing alcohol causes one to become drunk. 

 

This is all well and good, so far as it goes.3 It just doesn’t go very far. If we want to establish a 

robust knowledge of what causes the natural phenomena we’re interested in, we need techniques 

                                                 
3 Setting aside Hume’s philosophical skepticism about our ability to know that one thing causes another and about the 

conclusiveness of inductive reasoning. 
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that are more sophisticated than simple enumerative induction. There are such techniques. These 

are patterns of reasoning identified and catalogued by the 19th century English philosopher, 

scientist, logician, and politician John Stuart Mill. The inferential forms Mill enumerated have 

come to be called “Mill’s Methods”, because he thought of them as tools to be used in the 

investigation of nature—methods of discovering the causes of natural phenomena. In this section, 

we will look at Mill’s Methods each in turn (there are five of them), using examples to illustrate 

each. We will finish with a discussion of the limitations of the methods and the difficulty of 

isolating causes. 

 

The Meaning(s) of ‘Cause’ 

 

Before we proceed, however, we must issue something of a disclaimer: when we say the one action 

or event causes another, we don’t really know what the hell we’re talking about. OK, maybe that’s 

putting it a bit too strongly. The point is this: the meaning of ‘cause’ has been the subject of intense 

philosophical debate since ancient times (in both Greece and India)—debate that continues to this 

day. Myriad philosophical theories have been put forth over the millennia about the nature of 

causation, and there is no general agreement about just what it is (or whether causes are even real!). 

 

We’re not going to wade into those philosophical waters; they’re too deep. Instead, we’ll merely 

dip our toes in, by making a preliminary observation about the word ‘cause’—an observation that 

gives some hint as to why it’s been the subject of so much philosophical deliberation for so long. 

The observation is this: there are a number of distinct, but perfectly acceptable ways that we use 

the word ‘cause’ in everyday language. We attach different incompatible meanings to the term in 

different contexts.  

 

Consider this scenario: I’m in my backyard vegetable garden with my younger daughter (age 4 at 

the time). She’s “helping” me in my labors by watering some of the plants.4 She asks, “Daddy, 

why do we have to water the plants?” I might reply, “We do that because water causes the plants 

to grow.” This is a perfectly ordinary claim about cause and effect; it is uncontroversial and true. 

What do I mean by ‘causes’ in this sentence? I mean that water is a necessary condition for the 

plants to grow. Without water, there will be no growth. It is not a sufficient condition for plant-

growth, though: you also need sunlight, good soil, etc. 

 

Consider another completely ordinary, uncontroversial truth about causation: decapitation causes 

death. What do I mean by ‘causes’ in this sentence? I mean that decapitation is a sufficient 

condition for death. If death is the result you’re after, decapitation will do the trick on its own; 

nothing else is needed. It is not (thank goodness) a necessary condition for death, however. There 

are lots of other ways to die besides beheading. 

 

Finally, consider this true claim: smoking causes cancer. What do I mean by ‘causes’ in this 

sentence? Well, I don’t mean that smoking is a sufficient condition for cancer. Lots of people 

smoke all their lives but are lucky enough not to get cancer. Moreover, I don’t mean that smoking 

is a necessary condition for cancer. Lots of people get cancer—even lung cancer—despite having 

                                                 
4 Those who have ever employed a 4-year-old to facilitate a labor-intensive project will understand the scare quotes. 
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never smoked. Rather, what I mean is that smoking tends to produce cancer, that it increases the 

probability that one will get cancer. 

 

So, we have three totally ordinary uses of the word ‘cause’, with three completely different 

meanings: cause as necessary condition, sufficient condition, and mere tendency (neither necessary 

nor sufficient). These are incompatible, but all acceptable in their contexts. We could go on to list 

even more uses for the term, but the point has been made. Causation is a slippery concept, which 

is why philosophers have been struggling for so long to capture its precise meaning. In what 

follows, we will set aside these concerns and speak about cause and effect without hedging or 

disclaimers, but it’s useful to keep in mind that doing so papers over some deep and difficult 

philosophical problems. 

 

Mill’s Methods 

 

John Stuart Mill identified five different patterns of reasoning that one could use to discover 

causes. These are argument forms, the conclusions of which involve a claim to the effect that one 

thing causes (or is causally related to) another. They can be used alone or in combination, 

depending on the circumstances. As was the case with analogical reasoning, these are patterns of 

inference that we already employ unreflectively in everyday life. The benefit in making them 

explicit and subjecting them to critical scrutiny is that we thereby achieve a metacognitive 

perspective—a perspective from which we can become more self-aware, effective reasoners. This 

is especially important in the context of causal reasoning, since, as we shall see, there are many 

pitfalls in this domain that we a prone to fall into, many common errors that people make when 

thinking about cause and effect. 

 

Method of Agreement 

 

I’ve been suffering from heartburn recently. Seems like at least two or three days a week, by about 

dinnertime, I’ve got that horrible feeling of indigestion in my chest and that yucky taste in my 

mouth. Acid reflux: ugh. I’ve got to do something about this. What could be causing my heartburn, 

I wonder? I know that the things you eat and drink are typical causes of the condition, so I start 

thinking back, looking at what I’ve consumed on the days when I felt bad. As I recall, all of the 

recent days on which I suffered heartburn were different in various ways: my dinners ranged from 

falafel to spaghetti to spicy burritos; sometimes I had a big lunch, sometimes very little; on some 

days I drank a lot of coffee at breakfast, but other days not any at all. But now that I think about it, 

one thing stands out: I’ve been in a nostalgic mood lately, thinking about the good old days, when 

I was a carefree college student. I’ve been listening to lots of music from that time, watching old 

movies, etc. And as part of that trip down memory lane, I’ve re-acquired a taste for one of my 

favorite beverages from that era—Mountain Dew. I’ve been treating myself to a nice bottle of the 

stuff with lunch now and again. And sure enough, each of the days that I got heartburn was a day 

when I drank Mountain Dew at lunch. Huh. I guess the Mountain Dew is causing my heartburn. I 

better stop drinking it. 

 

This little story is an instance of Mill’s Method of Agreement. It’s a pattern of reasoning that one 

can use to figure out the cause of some phenomenon of interest. In this case, the phenomenon I 
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want to discover the cause of is my recent episodes of heartburn. I eventually figure out that the 

cause is Mountain Dew. We could sum up the reasoning pattern abstractly thus: 

 

We want to find the cause of a phenomenon, call it X. We examine a variety of 

circumstances in which X occurs, looking for potential causes. The circumstances differ in 

various ways, but they each have in common that they feature the same potential cause, 

call it A. We conclude that A causes X. 

 

Each of the past circumstances agrees with the others in the sense that they all feature the same 

potential cause—hence, the Method of Agreement. In the story above, the phenomenon X that I 

wanted to find the cause of was heartburn; the various circumstances were the days on which I had 

suffered that condition, and they varied with respect to potential causes (foods and beverages 

consumed); however, they all agreed in featuring Mountain Dew, which is the factor A causing 

the heartburn, X.  

 

More simply, we can sum up the Method of Agreement as a simple question: 

 

What causal factor is present whenever the phenomenon of interest is present? 

 

In the case of our little story, Mountain Dew was present whenever heartburn was present, so we 

concluded that it was the cause. 

 

Method of Difference 

 

Everybody in my house has a rash! Itchy skin, little red bumps; it’s annoying. It’s not just the 

grownups—me and my wife—but the kids, too. Even the dog has been scratching herself 

constantly! What could possibly be causing our discomfort? My wife and I brainstorm, and she 

remembers that she recently changed brands of laundry detergent. Maybe that’s it. So we re-wash 

all the laundry (including the pillow that the dog sleeps on in the windowsill) in the old detergent 

and wait. Sure enough, within a day or two, everybody’s rash is gone. Sweet relief! 

 

This story presents an instance of Mill’s Method of Difference. Again, we use this pattern of 

reasoning to discover the cause of some phenomenon that interests us—in this case, the rash we 

all have. We end up discovering that the cause is the new laundry detergent. We isolated this cause 

by removing that factor and seeing what happened. We can sum up the pattern of reasoning 

abstractly thus: 

 

We want to find the cause of a phenomenon, call it X. We examine a variety of 

circumstances in which X occurs, looking for potential causes. The circumstances differ in 

various ways, but they each have in common that when we remove from them a potential 

cause—call it A—the phenomenon disappears. We conclude that A causes X. 

 

If we introduce the same difference in all of the circumstances—removing the causal factor—we 

see the same effect—disappearance of the phenomenon. Hence, the Method of Difference. In our 

story, the phenomenon we wanted to explain, X, was the rash. The varying circumstances are the 

different inhabitants of my house—Mom, Dad, kids, even the dog—and the different factors 
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affecting them. The factor that we removed from each, A, was the new laundry detergent. When 

we did that, the rash went away, so the detergent was the cause of the rash—A caused X. 

 

More simply, we can sum up the Method of Difference as a simple question: 

 

What causal factor is absent whenever the phenomenon of interest is absent? 

 

In the case of our little story, when the detergent was absent, so too was the rash. We concluded 

that the detergent caused the rash. 

 

Joint Method of Agreement and Difference 

 

This isn’t really a new method at all. It’s just a combination of the first two. The Methods of 

Agreement and Difference are complementary; each can serve as a check on the other. Using them 

in combination is an extremely effective way to isolate causes.  

 

The Joint Method is an important tool in medical research. It’s the pattern of reasoning used in 

what we call controlled studies. In such a study, we split our subjects into two groups, one of which 

is the “control” group. An example shows how this works. Suppose I’ve formulated a pill that I 

think is a miracle cure for baldness. I’m gonna be rich! But first, I need to see if it really works. 

So I gather a bunch of bald men together for a controlled study. One group gets the actual drug; 

the other, control group, gets a sugar pill—not the real drug at all, but a mere placebo. Then I wait 

and see what happens. If my drug is a good as I think it is, two things will happen: first, the group 

that got the drug will grow new hair; and second, the group that got the placebo won’t grow new 

hair. If either of these things fails to happen, it’s back to the drawing board. Obviously, if the group 

that got the drug didn’t get any new hair, my baldness cure is a dud. But in addition, if the group 

that got the mere placebo grew new hair, then something else besides my drug has to be the cause. 

 

Both the Method of Agreement and the Method of Difference are being used in a controlled study. 

I’m using the Method of Agreement on the group that got the drug. I’m hoping that whenever the 

causal factor (my miracle pill) is present, so too will be the phenomenon of interest (hair growth). 

The control group complements this with the Method of Difference. For them, I’m hoping that 

whenever the causal factor (the miracle pill) is absent, so too will be the phenomenon of interest 

(hair growth). If both things happen, I’ve got strong confirmation that my drug causes hair growth. 

(Now all I have to do is figure out how to spend all my money!) 

 

Method of Residues 

 

I’m running a business. Let’s call it LogiCorp. For a modest fee, the highly trained logicians at 

LogiCorp will evaluate all of your deductive arguments, issuing Certificates of Validity (or 

Invalidity) that are legally binding in all fifty states. Satisfaction guaranteed. Anyway, as should 

be obvious from that brief description of the business model, LogiCorp is a highly profitable 

enterprise. But last year’s results were disappointing. Profits were down 20% from the year before. 

Some of this was expected. We undertook a renovation of the LogiCorp World Headquarters that 

year, and the cost had an effect on our bottom line: half of the lost profits, 10%, can be chalked up 

to the renovation expenses. Also, as healthcare costs continue to rise, we had to spend additional 
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money on our employees’ benefits packages; these expenditures account for an additional 3% of 

profit shortfall. Finally, another portion of the drop in profits can be explained by the entry of a 

competitor into the marketplace. The upstart firm Arguments R Us, with its fast turnaround times 

and ultra-cheap prices, has been cutting into our market share. Their services are totally inferior to 

ours (you should see the shoddy shading technique in their Venn Diagrams!) and LogiCorp will 

crush them eventually, but for now they’re hurting our business: competition from Arguments R 

Us accounts for a 5% drop in our profits.  

 

As CEO, I was of course aware of all these potential problems throughout the year, so when I 

looked at the numbers at the end, I wasn’t surprised. But, when I added up the contributions from 

the three factors I knew about—10% from the renovation, 3% from the healthcare expenditures, 

5% from outside competition—I came up short. Those causes only account for an 18% shortfall 

in profit, but we were down 20% on the year; there was an extra 2% shortfall that I couldn’t explain. 

I’m a suspicious guy, so I hired an outside security firm to monitor the activities of various highly 

placed employees at my firm. And I’m glad I did! Turns out my Chief Financial Officer had been 

taking lavish weekend vacations to Las Vegas and charging his expenses to the company credit 

card. His thievery surely accounts for the extra 2%. I immediately fired the jerk. (Maybe he can 

get a job with Arguments R Us.) 

 

This little story presents an instance of Mill’s Method of Residues. ‘Residue’ in this context just 

means the remainder, that which is left over. The pattern of reasoning, put abstractly, runs 

something like this: 

 

We observe a series of phenomena, call them X1, X2, X3, …, Xn. As a matter of background 

knowledge, we know that X1 is caused by A1, that X2 is caused by A2, and so on. But when 

we exhaust our background knowledge of the causes of phenomena, we’re left with one, 

Xn, that is inexplicable in those terms. So we must seek out an additional causal factor, An, 

as the cause of Xn. 

 

The leftover phenomenon, Xn, inexplicable in terms of our background knowledge, is the residue. 

In our story, that was the additional 2% profit shortfall that couldn’t be explained in terms of the 

causal factors we were already aware of, namely the headquarters renovation (A1, which caused 

X1, a 10% shortfall), the healthcare expenses (A2, which caused X2, a 3% shortfall), and the 

competition from Arguments R Us (A3, which caused X3, a 5% shortfall). We had to search for 

another, previously unknown cause for the final, residual 2%. 

 

Method of Concomitant Variation 

 

Fact: if you’re a person who currently maintains a fairly steady weight, and you change nothing 

else about your lifestyle, adding 500 calories per day to your diet will cause you to gain weight. 

Conversely, if you cut 500 calories per day from your diet, you would lose weight. That is, calorie 

consumption and weight are causally related: consuming more will cause weight gain; consuming 

less will cause weight loss.  

 

Another fact: if you’re a person who currently maintains a steady weight, and you change nothing 

else about your lifestyle, adding an hour of vigorous exercise per day to your routine will cause 
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you to lose weight. Conversely, (assuming you already exercise a heck of a lot), cutting that 

amount of exercise from your routine will cause you to gain weight. That is, exercise and weight 

are causally related: exercising more will cause weight loss; exercising less will cause weight gain. 

 

(These are revolutionary insights, I know. My next get-rich-quick scheme is to popularize one of 

those fad diets. Instead of recommending eating nothing but bacon or drinking nothing but 

smoothies made of kale and yogurt, my fad diet will be the “Eat Less, Move More” plan. I’m 

gonna be rich!) 

 

I know about the cause-and-effect relationships above because of the Method of Concomitant 

Variation. Put abstractly, this pattern of reasoning goes something like this: 

 

We observe that, holding other factors constant, an increase or decrease in some causal 

factor A is always accompanied by a corresponding increase or decrease in some 

phenomenon X. We conclude that A and X are causally related. 

 

Things that “vary concomitantly” are things, to put it more simply, that change together. As A 

changes—goes up or down—X changes, too. There are two ways things can vary concomitantly: 

directly or inversely. If A and X vary directly, that means that an increase in one will be 

accompanied by an increase in the other (and a decrease in one will be accompanied by a decrease 

in the other); if A and X vary inversely, that means an increase in one will be accompanied by a 

decrease in the other. 

 

In our first example, calorie consumption (A) and weight (X) vary directly. As calorie consumption 

increases, weight increases; and as calorie consumption decreases, weight decreases. In our second 

example, exercise (A) and weight (X) vary inversely. As exercise increases, weight decreases; and 

as exercise decreases, weight increases.  

 

Either way, when things change together in this way, when they vary concomitantly, we conclude 

that they are causally related. 

 

The Difficulty of Isolating Causes 
 

Mill’s Methods are useful in discovering the causes of phenomena in the world, but their usefulness 

should not be overstated. Unless they are employed thoughtfully, they can lead an investigator 

astray. A classic example of this is the parable of the drunken logician.5 After a long day at work 

on a Monday, a certain logician heads home wanting to unwind. So he mixes himself a “7 and 

7”—Seagram’s 7 Crown whiskey and 7-Up. It tastes so good, he makes another—and another, and 

another. He drinks seven of these cocktails, passes out in his clothes, and wakes up feeling terrible 

(headache, nausea, etc.). On Tuesday, after dragging himself into work, toughing it through the 

day, then finally getting home, he decides to take the edge off with a different drink: brandy and 

7-Up. He gets carried away again, and ends up drinking seven of these cocktails, with the same 

result: passing out in his clothes and waking up feeling awful on Wednesday. So, on Wednesday 

night, our logician decides to mix things up again: scotch and 7-Up. He drinks seven of these; same 

                                                 
5 Inspired by Copi and Cohen, p. 547. 
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results. But he perseveres: Thursday night, it’s seven vodka and 7-Ups; another blistering hangover 

on Friday. So on Friday at work, he sits down to figure out what’s going on. He’s got a 

phenomenon—hangover symptoms every morning of that week—that he wants to discover the 

cause of. He’s a professional logician, intimately familiar with Mill’s Methods, so he figures he 

ought to be able to discover the cause. He looks back at the week and uses the Method of 

Agreement, asking, “What factor was present every time the phenomenon was?” He concludes 

that the cause of his hangovers is 7-Up. 

 

Our drunken logician applied the Method of Agreement correctly: 7-Up was indeed present every 

time. But it clearly wasn’t the cause of his hangovers. The lesson is that Mill’s Methods are useful 

tools for discovering causes, but their results are not always definitive. Uncritical application of 

the methods can lead one astray. This is especially true of the Method of Concomitant Variation. 

You may have heard the old saw that “correlation does not imply causation.” It’s useful to keep 

this corrective in mind when using the Method of Concomitant Variation. That two things vary 

concomitantly is a hint that they may be causally related, but it is not definitive proof that they are. 

They may be separate effects of a different, unknown cause; they may be completely causally 

unrelated. It is true, for example, that among children, shoe size and reading ability vary directly: 

children with bigger feet are better readers than those with smaller feet. Wow! So large feet cause 

better reading? Of course not. Larger feet and better reading ability are both effects of the same 

cause: getting older. Older kids wear bigger shoes than younger kids, and they also do better on 

reading tests. Duh. It is also true, for example, that hospital quality and death rate vary directly: 

that is, the higher quality the hospital (prestige of doctors, training of staff, sophistication of 

equipment, etc.), on average, the higher the death rate at that hospital. That’s counterintuitive! 

Does that mean that high hospital quality causes high death rates? Of course not. Better hospitals 

have higher mortality rates because the extremely sick, most badly injured patients are taken to 

those hospitals, rather than the ones with lower-quality staff and equipment. Alas, these people die 

more often, but not because they’re at a good hospital; it’s exactly the reverse. 

 

Spurious correlations—those that don’t involve any causal connection at all—are easy to find in 

the age of “big data.” With publicly available databases archiving large amounts of data, and 

computers with the processing power to search them and look for correlations, it is possible to find 

many examples of phenomena that vary concomitantly but are obviously not causally connected. 

A very clever person named Tyler Vigen set about doing this and created a website where he 

posted his (often very amusing) discoveries.6 For example, he found that between 2000 and 2009, 

per capita cheese consumption among Americans was very closely correlated with the number of 

deaths caused by people becoming entangled in their bedsheets: 

 

                                                 
6 http://tylervigen.com/spurious-correlations. The site has a tool that allows the user to search for correlations. It’s a 

really amusing way to kill some time. 

http://tylervigen.com/spurious-correlations
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These two phenomena vary directly, but it’s hard to imagine how they could be causally related. 

It’s even more difficult to imagine how the following two phenomena could be causally related: 

 

 
 

So, Mill’s Methods can’t just be applied willy-nilly; one could end up “discovering” causal 

connections where none exist. They can provide clues as to potential causal relationships, but care 

and critical analysis are required to confirm those results. It’s important to keep in mind that the 

various methods can work in concert, providing a check on each other. If the drunken logician, for 

example, had applied the Method of Difference—removing the 7-Up but keeping everything else 

the same—he would have discovered his error (he would’ve kept getting hangovers). The 

combination of the Methods of Agreement and Difference—the Joint Method, the controlled 

study—is an invaluable tool in modern scientific research. A properly conducted controlled study 

can provide quite convincing evidence of causal connections (or a lack thereof).  

 

Of course, properly conducting a controlled study is not as easy as it sounds. It involves more than 

just the application of the Joint Method of Agreement and Difference. There are other potentially 

confounding factors that must be accounted for in order for such a study to yield reliable results. 

For example, it’s important to take great care in separating subjects into the test and control groups: 

there can be no systematic difference between the two groups other than the factor that we’re 
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testing; if there is, we cannot say whether the factor we’re testing or the difference between the 

groups is the cause of any effects observed. Suppose we were conducting a study to determine 

whether or not vitamin C was effective in treating the common cold.7 We gather 100 subjects 

experiencing the onset of cold symptoms. We want one group of 50 to get vitamin C supplements, 

and one group of 50—the control group—not to receive them. How do we decide who gets placed 

into which group? We could ask for volunteers. But doing so might create a systematic difference 

between the two groups. People who hear “vitamin C” and think, “yeah, that’s the group for me” 

might be people who are more inclined to eat fruits and vegetables, for example, and might 

therefore be healthier on average than people who are turned off by the idea of receiving vitamin 

C supplements. This difference between the groups might lead to different results between the how 

their colds progress. Instead of asking for volunteers, we might just assign the first 50 people who 

show up to the vitamin C group, and the last 50 to the control group. But this could lead to 

differences, as well. The people who show up earlier might be early-risers, who might be healthier 

on average than those who straggle in late. 

 

The best way to avoid systematic differences between test and control groups is to randomly assign 

subjects to each. We refer to studies conducted this way as randomized controlled studies. And 

besides randomization, other measures can be taken to improve reliability. The best kinds of 

controlled studies are “double-blind”. This means that neither the subjects nor the people 

conducting the study know which group is the control and which group is receiving the actual 

treatment. (This information is hidden from the researchers only while the study is ongoing; they 

are told later, of course, so they can interpret the results.) This measure is necessary because of the 

psychological tendency for people’s observations to be biased based on their expectations. For 

example, if the control group in our vitamin C experiment knew they were not getting any 

treatment for their colds, they might be more inclined to report that they weren’t feeling any better. 

Conversely, if the members of the group receiving the vitamin supplements knew that they were 

getting treated, they might be more inclined to report that their symptoms weren’t as bad. This is 

why the usual practice is to keep subjects in the dark about which group they’re in, giving a placebo 

to the members of the control group. It’s important to keep the people conducting the study “blind” 

for the same reasons. If they knew which group was which, they might be more inclined to observe 

improvement in the test group and a lack of improvement in the control group. In addition, in their 

interactions with the subjects, they may unknowingly give away information about which group 

was which via subconscious signals. 

 

Hence, the gold standard for medical research (and other fields) is the double-blind controlled 

study. It’s not always possible to create those conditions—sometimes the best doctors can do is to 

use the Method of Agreement and merely note commonalities amongst a group of patients 

suffering from the same condition, for example—but the most reliable results come from such 

tests. Discovering causes is hard in many contexts. Mill’s Methods are a useful starting point, and 

they accurately model the underlying inference patterns involved in such research, but in practice 

they must be supplemented with additional measures and analytical rigor in order to yield 

definitive results. They can give us clues about causes, but they aren’t definitive evidence. 

Remember, these are inductive, not deductive arguments. 

 

 

                                                 
7 Despite widespread belief that it is, researchers have found very little evidence to support this claim.  
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EXERCISES 

 

1. What is meant by the word ‘cause’ in the following—necessary condition, sufficient condition, 

or mere tendency? 

 

 (a) Throwing a brick through a window causes it to break. 

 (b) Slavery caused the American Civil War. 

 (c) Exposure to the cold causes frostbite. 

 (d) Running causes knee injuries. 

 (e) Closing your eyes causes you not to be able to see. 

 

2. Consider the following scenario and answer the questions about it: 

 

Alfonse, Bertram, Claire, Dominic, Ernesto, and Francine all go out to dinner at a local 

greasy spoon.  There are six items on the menu: shrimp cocktail, mushroom/barley soup, 

burger, fries, steamed carrots, and ice cream.  This is what they ate: 

            Alfonse: shrimp, soup, fries 

            Bertram: burger, fries, carrots, ice cream 

            Claire: soup, burger, fries, carrots 

            Dominic: shrimp, soup, fries, ice cream 

            Ernesto: burger, fries, carrots 

            Francine: ice cream 

That night, Alfonse, Claire, and Dominic all came down with a wicked case of food-

poisoning.  The others felt fine. 

(a) Using only the Method of Agreement, how far can we narrow down the list of possible 

causes for the food poisoning? 

(b) Using only the Method of Difference, how far can we narrow down the list of possible 

causes for the food poisoning? 

(c) Using the Joint Method, we can identify the cause.  What is it? 

3. For each of the following, identify which of Mill’s Methods is being used to draw the causal 

conclusion. 

 

(a) A farmer noticed a marked increase in crop yields for the season. He started using a 

new and improved fertilizer that year, and the weather was particularly ideal—just enough 

rain and sunshine. Nevertheless, the increase was greater than could be explained by these 

factors. So he looked into it and discovered that his fields had been colonized by 

hedgehogs, who prey on the kinds of insect pests that usually eat crops. 
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(b) I’ve been looking for ways to improve the flavor of my vegan chili. I read on a website 

that adding soy sauce can help: it has lots of umami flavor, and that can help compensate 

for the lack of meat. So the other day, I made two batches of my chili, one using my usual 

recipe, and the other made exactly the same way, except for the addition of soy sauce. I 

invited a bunch of friends over for a blind taste test, and sure enough, the chili with the soy 

sauce was the overwhelming favorite! 

 

(c) The mere presence of guns in circulation can lead to higher murder rates. The data are 

clear on this. In countries with higher numbers of guns per capita, the murder rate is higher; 

and in countries with lower numbers of guns per capita, the murder rate is correspondingly 

lower. 

 

(d) There’s a simple way to end mass shootings: outlaw semiautomatic weapons. In 1996, 

Australia suffered the worst mass shooting episode in its history, when a man in Tasmania 

used two semiautomatic rifles to kill 35 people (and wound an additional 19). The 

Australian government responded by making such weapons illegal. There hasn’t been a 

mass shooting in Australia since. 

 

(e) A pediatric oncologist was faced with a number of cases of childhood leukemia over a 

short period of time. Puzzled, he conducted thorough examinations of all the children, and 

also compared their living situations. He was surprised to discover that all of the children 

lived in houses that were located very close to high-voltage power lines. He concluded that 

exposure to electromagnetic fields causes cancer. 

 

(f) Many people are touting the benefits of the so-called “Mediterranean” diet because it 

apparently lowers the risk of heart disease. Residents of countries like Italy and Greece, for 

example, consume large amounts of vegetables and olive oil and suffer from heart 

problems at a much lower rate than Americans.  

 

(g) My daughter came down with what appeared to be a run-of-the-mill case of the flu: 

fever, chills, congestion, sore throat. But it was a little weird. She was also experiencing 

really intense headaches and an extreme sensitivity to light. Those symptoms struck me as 

atypical of mere influenza, so I took her to the doctor. It’s a good thing I did! It turns out 

she had a case of bacterial meningitis, which is so serious that it can cause brain damage if 

not treated early. Luckily, we caught it in time and she’s doing fine. 



CHAPTER 6 

 

Inductive Logic II: Probability and Statistics 
 

 

 

 

 

 

 

 

 

 

I.  The Probability Calculus 

 

Inductive arguments, recall, are arguments whose premises support their conclusions insofar as 

they make them more probable. The more probable the conclusion in light of the premises, the 

stronger the argument; the less probable, the weaker. As we saw in the last chapter, it is often 

impossible to say with any precision exactly how probable the conclusion of a given inductive 

argument is in light of its premises; often, we can only make relative judgments, noting that one 

argument is stronger than another, because the conclusion is more probable, without being able to 

specify just how much more probable it is. 

 

Sometimes, however, it is possible to specify precisely how probable the conclusion of an 

inductive argument is in light of its premises. To do that, we must learn something about how to 

calculate probabilities; we must learn the basics of the probability calculus. This is the branch of 

mathematics dealing with probability computations.1 We will cover its most fundamental rules and 

learn to perform simple calculations. After that preliminary work, we use the tools provided by the 

probability calculus to think about how to make decisions in the face of uncertainty, and how to 

adjust our beliefs in the light of evidence. We will consider the question of what it means to be 

rational when engaging in these kinds of reasoning activities. 

 

                                                 
1 Don’t freak out about the word ‘calculus’. We’re not doing derivatives and integrals here; we’re using that word in 

a generic sense, as in ‘a system for performing calculations’, or something like that. Also, don’t get freaked out about 

‘mathematics’. This is really simple, fifth-grade stuff: adding and multiplying fractions and decimals.  
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Finally, we will turn to an examination of inductive arguments involving statistics. Such arguments 

are of course pervasive in public discourse. Building on what we learned about probabilities, we 

will cover some of the most fundamental statistical concepts. This will allow us to understand 

various forms of statistical reasoning—from different methods of hypothesis testing to sampling 

techniques. In addition, even a rudimentary understanding of basic statistical concepts and 

reasoning methods will put us in a good position to recognize the myriad ways in which statistics 

are misunderstood, misused, and deployed with the intent to manipulate and deceive. As Mark 

Twain said, “There are three kinds of lies: lies, damned lies, and statistics.”2 Advertisers, 

politicians, pundits—everybody in the persuasion business—trot out statistical claims to bolster 

their arguments, and more often than not they are either deliberately or mistakenly committing 

some sort of fallacy. We will end with a survey of these sorts of errors. 

 

But first, we examine the probability calculus. Our study of how to compute probabilities will 

divide neatly into two sections, corresponding to the two basic types of probability calculations 

one can make. There are, on the one hand, probabilities of multiple events all occurring—or, 

equivalently, multiple propositions all being true; call these conjunctive occurrences. We will first 

learn how to calculate the probabilities of conjunctive occurrences—that this event and this other 

event and some other event and so on will occur. On the other hand, there are probabilities that at 

least one of a set of alternative events will occur—or, equivalently, that at least one of a set of 

propositions will be true; call these disjunctive occurrences. In the second half of our examination 

of the probability calculus we will learn how to calculate the probabilities of disjoint occurrences—

that this event or this other event or some other event or… will occur. 

 

Conjunctive Occurrences 

 

Recall from our study of sentential logic that conjunctions are, roughly, ‘and’-sentences. We can 

think of calculating the probability of conjunctive occurrences as calculating the probability that a 

particular conjunction is true. If you roll two dice and want to know your chances of getting “snake 

eyes” (a pair of ones), you’re looking for the probability that you’ll get a one on the first die and a 

one on the second. 

 

Such calculations can be simple or slightly more complex. What distinguishes the two cases is 

whether or not the events involved are independent. Events are independent when the occurrence 

of one has no effect on the probability that any of the others will occur. Consider the dice 

mentioned above. We considered two events: one on die #1, and one on die #2. Those events are 

independent. If I get a one on die #1, that doesn’t affect my chances of getting a one on the second 

die; there’s no mysterious interaction between the two dice, such that what happens with one can 

affect what happens with the other. They’re independent.3 On the other hand, consider picking two 

                                                 
2 Twain attributes the remark to British Prime Minister Benjamin Disraeli, though it’s not really clear who said it first. 
3 If you think otherwise, you’re committing what’s known as the Gambler’s Fallacy. It’s surprisingly common. Go to 

a casino and you’ll see people committing it. Head to the roulette wheel, for example, where people can bet on whether 

the ball lands in a red or a black space. After a run of say, five reds in a row, somebody will commit the fallacy: “Red 

is hot! I’m betting on it again.” This person believes that the results of the previous spins somehow affect the 

probability of the outcome of the next one. But they don’t. Notice that an equally compelling (and fallacious) case can 

be made for black: “Five reds in a row? Black is due. I’m betting on black.”  
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cards from a standard deck (and keeping them after they’re drawn).4 Here are two events: the first 

card is a heart, the second card is a heart. Those events are not independent. Getting a heart on the 

first draw affects your chances of getting a second heart (it makes the second heart less likely). 

 

When events are independent, things are simple. We calculate the probability of their conjunctive 

occurrence by multiplying the probabilities of their individual occurrences. This is the Simple 

Product Rule: 

 

P(a • b • c • …) = P(a) x P(b) x P(c) x …  

 

This rule is abstract; it covers all cases of the conjunctive occurrence of independent events. ‘a’, 

‘b’, and ‘c’ refer to events; the ellipses indicate that there may be any number of them. When we 

write ‘P’ followed by something in parentheses, that’s just the probability of the thing in 

parentheses coming to pass. On the left-hand side of the equation, we have a bunch of events with 

dots in between them. The dot means the same thing it did in SL: it’s short for and. So this equation 

just tells us that to compute the probability of a and b and c (and however many others there are) 

occurring, we just multiply together the individual probabilities of those events occurring on their 

own. 

 

Go back to the dice above. We roll two dice. What’s the probability of getting a pair of ones? The 

events—one on die #1, one on die #2—are independent, so we can use the Simple Product Rule 

and just multiply together their individual probabilities. 

 

What are those probabilities? We express probabilities as numbers between 0 and 1. An event with 

a probability of 0 definitely won’t happen (a proposition with a probability of 0 is certainly false); 

an event with a probability of 1 definitely will happen (a proposition with a probability of 1 is 

certainly true). Everything else is a number in between: closer to 1 is more probable; closer to 0, 

less. So, how probable is it for a rolled die to show a one? There are six possible outcomes when 

you roll a die; each one is equally likely. When that’s the case, the probability of the particular 

outcome is just 1 divided by the number of possibilities. The probability of rolling a one is 1/6.  

 

So, we calculate the probability of rolling “snake eyes” as follows: 

 

P(one on die #1 • one on die #2) = P(one on die #1) x P(one on die #2) 

                                                     = 1/6 x 1/6 

                                                     = .0278 

 

If you roll two dice a whole bunch of times, you’ll get a pair of one a little less than 3% of the 

time. 

 

We noted earlier that if you draw two cards from a deck, two possible outcomes—first card is a 

heart, second card is a heart —are not independent. So we couldn’t calculate the probability of 

getting two spades using the Simple Product Rule. We could only do that if we made the two 

events independent—if we stipulated that after drawing the first card, you put it (randomly) back 

                                                 
4 A standard deck has 52 playing cards, equally divided among four suits (hearts, diamonds, clubs, and spades) with 

13 different cards in each suit: Ace (A), 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack (J), Queen (Q), and King (K). 
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into the deck, so you’re picking at random from a full deck of cards each time. In that case, you’ve 

got a 1/4 chance of picking a heart each time, so the probability of picking two in a row would be 
1/4 x 1/4—and the probability of picking three in a row would be 1/4 x 1/4 x 1/4, and so on. 

 

Of course the more interesting question—and the more practical one, if you’re a card player 

looking for an edge—is the original one: what’s the probability of, say, drawing three hearts 

assuming, as is the case in all real-life card games, that you keep the cards as you draw them? As 

we noted, these events— heart on the first card, heart on the second card, heart on the third card—

are not independent, because each time you succeed in drawing a heart, that affects your chances 

(negatively) of drawing another one. Let’s think about this effect in the current case. The 

probability of drawing the first heart from a well-shuffled, complete deck is simple: 1/4. It’s the 

subsequent hearts that are complicated. How much of an effect does success at drawing that first 

heart have on the probability of drawing the second one? Well, if we’ve already drawn one heart, 

the deck from which we’re attempting to draw the second is different from the original, full deck: 

specifically, it’s short the one card already drawn—so there are only 51 total—and it’s got fewer 

hearts now—12 instead of the original 13. 12 out of the remaining 51 cards are hearts, then. So the 

probability of drawing a second heart, assuming the first one has already been picked, is 12/51. If 

we succeed in drawing the second heart, what are our chances at drawing a third? Again, in this 

case, the deck is different: we’re now down to 50 total cards, only 11 of which are hearts. So the 

probability of getting the third heart is 11/50.  

 

It’s these fractions—1/4, 
12/51, and 11/50—that we must multiply together to determine the 

probability of drawing three straight hearts while keeping the cards. The result is (approximately) 

.013—a lower probability than that of picking 3 straight hearts when the cards are not kept, but 

replaced after each selection: 1/4 x 1/4 x 1/4 = .016 (approximately). This is as it should be: it’s 

harder to draw three straight hearts when the cards are kept, because each success diminishes the 

probability of drawing another heart. The events are not independent. 

 

In general, when events are not independent, we have to make the same move that we made in the 

three-hearts case. Rather than considering the stand-alone probability of a second and third heart—

as we could in the case where the events were independent—we had to consider the probability of 

those events assuming that other events had already occurred. We had to ask what the probability 

was of drawing a second heart, given that the first one had already been drawn; then we asked after 

the probability of drawing the third heart, given that the first two had been drawn. 

 

We call such probabilities—the likelihood of an event occurring assuming that others have 

occurred—conditional probabilities. When events are not independent, the Simple Product Rule 

does not apply; instead, we must use the General Product Rule: 

 

P(a • b • c • …) = P(a) x P(b | a) x P(c | a • b) x … 

 

The term ‘P(b | a)’ stands for the conditional probability of b occurring, provided a already has. 

The term ‘P(c | a • b)’ stands for the conditional probability of c occurring, provided a and b already 

have. If there were a fourth event, d, we would have a this term on the right-hand side of the 

equation: ‘P(d | a • b • c)’. And so on. 
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Let’s reinforce our understanding of how to compute the probabilities of conjunctive occurrences 

with a sample problem: 

 

There is an urn filled with marbles of various colors. Specifically, it contains 20 red 

marbles, 30 blue marbles, and 50 white marbles. If we select 4 marbles from the earn at 

random, what’s the probability that all four will be blue, (a) if we replace each marble after 

drawing it, and (b) if we keep each marble after drawing it? 

 

Let’s let ‘B1’ stand for the event of picking a blue marble on the first selection; and we’ll 

let ‘B2’, ‘B3’, and ‘B4’ stand for the events of picking blue on the second, third, and fourth 

selections, respectively. We want the probability of all of these events occurring: 

 

P(B1 • B2 • B3 • B4) = ? 

 

(a) If we replace each marble after drawing it, then the events are independent: selecting 

blue on one drawing doesn’t affect our chances of selecting blue on any other; for each 

selection, the urn has the same composition of marbles. Since the events are independent 

in this case, we can use the Simple Product Rule to calculate the probability: 

 

P(B1 • B2 • B3 • B4) = P(B1) x P(B2) x P(B3) x P(B4) 

 

And since there are 100 total marbles in the urn, and 30 of them are blue, on each selection 

we have a 30/100 (= .3) probability of picking a blue marble.  

 

P(B1 • B2 • B3 • B4) = .3 x .3 x .3 x .3 = .0081 

(b) If we don’t replace the marbles after drawing them, then the events are not independent: 

each successful selection of a blue marble affects our chances (negatively) of drawing 

another blue marble. When events are not independent, we need to use the General Product 

Rule: 

 

P(B1 • B2 • B3 • B4) = P(B1) x P(B2 | B1) x P(B3 | B1 • B2) x P(B4 | B1 • B2 • B3) 

 

On the first selection, we have the full urn, so P(B1) = 30/100. But for the second term in our 

product, we have the conditional probability P(B2 | B1); we want to know the chances of 

selecting a second blue marble on the assumption that the first one has already been 

selected. In that situation, there are only 99 total marbles left, and 29 of them are blue. For 

the third term in our product, we have the conditional probability P(B3 | B1 • B2); we want 

to know the chances of drawing a third blue marble on the assumption that the first and 

second ones have been selected. In that situation, there are only 98 total marbles left, and 

28 of them are blue. And for the final term—P(B4 | B1 • B2 • B3)—we want the probability 

of a fourth blue marble, assuming three have already been picked; there are 27 left out of 

a total of 97.  

 

P(B1 • B2 • B3 • B4) = 30/100 x 29/99 x 28/98 x 27/97 = .007 (approximately) 
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Disjunctive Occurrences 

 

Conjunctions are (roughly) ‘and’-sentences. Disjunctions are (roughly) ‘or’-sentences. So we can 

think of calculating the probability of disjunctive occurrences as calculating the probability that a 

particular disjunction is true. If, for example, you roll a die and you want to know the probability 

that it will come up with an odd number showing, you’re looking for the probability that you’ll 

roll a one or you’ll roll a three or you’ll roll a five. 

 

As was the case with conjunctive occurrences, such calculations can be simple or slightly more 

complex. What distinguishes the two cases is whether or not the events involved are mutually 

exclusive. Events are mutually exclusive when at most one of them can occur—when the 

occurrence of one precludes the occurrence of any of the others. Consider the die mentioned above. 

We considered three events: it comes up showing one, it comes up showing three, and it comes up 

showing five. Those events are mutually exclusive; at most one of them can occur. If I roll a one, 

that means I can’t roll a three or a five; if I roll a three, that means I can’t roll a one or a five; and 

so on. (At most one of them can occur; notice, it’s possible that none of them occur.) On the other 

hand, consider the dice example from earlier: rolling two dice, with the events under consideration 

rolling a one on die #1 and rolling a one on die #2. These events are not mutually exclusive. It’s 

not the case that at most one of them could happen; they could both happen—we could roll snake 

eyes.  

 

When events are mutually exclusive, things are simple. We calculate the probability of their 

disjunctive occurrence by adding the probabilities of their individual occurrences. This is the 

Simple Addition Rule: 

 

P(a  b  c  …) = P(a) + P(b) + P(c) + … 

 

This rule exactly parallels the Simple Product Rule from above. We replace that rule’s dots with 

wedges, to reflect the fact that we’re calculating the probability of disjunctive rather than 

conjunctive occurrences. And we replace the multiplication signs with additions signs on the right-

hand side of the equation to reflect the fact that in such cases we add rather than multiply the 

individual probabilities. 

 

Go back to the die above. We roll it, and we want to know the probability of getting an odd number. 

There are three mutually exclusive events—rolling a one, rolling a three, and rolling a five—and 

we want their disjunctive probability; that’s P(one  three  five). Each individual event has a 

probability of 1/6, so we calculate the disjunctive occurrence with the Simple Addition Rule thus: 

 

P(one  three  five) = P(one) + P(three) + P(five) 

                                   = 1/6 + 1/6 + 1/6 = 3/6 = 1/2 

 

This is a fine result, because it’s the result we knew was coming. Think about it: we wanted to 

know the probability of rolling an odd number; half of the numbers are odd, and half are even; so 

the answer better be 1/2. And it is. 

 



 Probability and Statistics 181 

 

Now, when events are not mutually exclusive, the Simple Addition Rule cannot be used; its results 

lead us astray. Consider a very simple example: flip a coin twice; what’s the probability that you’ll 

get heads at least once? That’s a disjunctive occurrence: we’re looking for the probability that 

you’ll get heads on the first toss or heads on the second toss. But these two events—heads on toss 

#1, heads on toss #2—are not mutually exclusive. It’s not the case that at most one can occur; you 

could get heads on both tosses. So in this case, the Simple Addition Rule will give us screwy 

results. The probability of tossing heads is 1/2, so we get this: 

 

P(heads on #1  heads on #2) = P(heads on #1) + P(heads on #2) 

                                                 = 1/2 + 1/2 = 1 [WRONG!] 

 

If we use the Simple Addition Rule in this case, we get the result that the probability of throwing 

heads at least once is 1; that is, it’s absolutely certain to occur. Talk about screwy! We’re not 

guaranteed to gets heads at least once; we could toss tails twice in a row. 

 

In cases such as this, where we want to calculate the probability of the disjunctive occurrence of 

events that are not mutually exclusive, we must do so indirectly, using the following universal 

truth: 

 

P(success) = 1 - P(failure) 

 

This formula holds for any event or combination of events whatsoever. It says that the probability 

of any occurrence (singular, conjunctive, disjunctive, whatever) is equal to 1 minus the probability 

that it does not occur. ‘Success’ = it happens; ‘failure’ = it doesn’t. Here’s how we arrive at the 

formula. For any occurrence, there are two possibilities: either it will come to pass or it will not; 

success or failure. It’s absolutely certain that at least one of these two will happen; that is, P(success 

 failure) = 1. Success and failure are (obviously) mutually exclusive outcomes (they can’t both 

happen). So we can express P(success  failure) using the Simple Addition Rule: P(success  

failure) = P(success) + P(failure). And as we’ve already noted, P(success  failure) = 1, so 

P(success) + P(failure) = 1. Subtracting P(failure) from each side of the equation gives us our 

universal formula: P(success) = 1 - P(failure). 

 

Let’s see how this formula works in practice. We’ll go back to the case of flipping a coin twice. 

What’s the probability of getting at least one head? Well, the probability of succeeding in getting 

at least one head is just 1 minus the probability of failing. What does failure look like in this case? 

No heads; two tails in a row. That is, tails on the first toss and tails on the second toss. See that 

‘and’ in there? (I italicized it.) This was originally a disjunctive-occurrence calculation; now we’ve 

got a conjunctive occurrence calculation. We’re looking for the probability of tails on the first toss 

and tails on the second toss: 

 

P(tails on toss #1 • tails on toss #2) = ? 

 

We know how to do problems like this. For conjunctive occurrences, we need first to ask whether 

the events are independent. In this case, they clearly are. Getting tails on the first toss doesn’t affect 

my chances of getting tails on the second. That means we can use the Simple Product Rule: 
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P(tails on toss #1 • tails on toss #2) = P(tails on toss #1) x P(tails on toss #2) 

                                                          = 1/2 x 1/2 = 1/4  

 

Back to our universally true forumula: P(success) = 1 – P(failure). The probability of failing to 

toss at least one head is 1/4. The probability of succeeding in throwing at least one head, then, is 

just 1 – 1/4 = 3/4.
5 

 

So, generally speaking, when we’re calculating the probability of disjunctive occurrences and the 

events are not mutually exclusive, we need to do so indirectly, by calculating the probability of the 

failure of any of the disjunctive occurrences to come to pass and subtracting that from 1. This has 

the effect of turning a disjunctive occurrence calculation into a conjunctive occurrence calculation: 

the failure of a disjunction is a conjunction of failures. This is a familiar point from our study of 

SL in Chapter 4. Failure of a disjunction is a negated disjunction; negated disjunctions are 

equivalent to conjunctions of negations. This is one of DeMorgan’s Laws: 

 

~ (p  q)  ~ p • ~ q 

 

Let’s reinforce our understanding of how to compute probabilities with another sample problem. 

This problem will involve both conjunctive and disjunctive occurrences. 

 

There is an urn filled with marbles of various colors. Specifically, it contains 20 red 

marbles, 30 blue marbles, and 50 white marbles. If we select 4 marbles from the urn at 

random, what’s the probability that all four will be the same color, (a) if we replace each 

marble after drawing it, and (b) if we keep each marble after drawing it? Also, what’s the 

probability that at least one of our four selections will be red, (c) if we replace each marble 

after drawing it, and (d) if we keep each marble after drawing it? 

 

This problem splits into two: on the one hand, in (a) and (b), we’re looking for the 

probability of drawing four marbles of the same color; on the other hand, in (c) and (d), we 

want the probability that at least one of the four will be red. We’ll take these two questions 

up in turn. 

 

First, the probability that all four will be the same color. We dealt with a narrower version 

of this question earlier when we calculated the probability that all four selections would be 

blue. But the present question is broader: we want to know the probability that they’ll all 

be the same color, not just one color (like blue) in particular, but any of the three 

possibilities—red, white, or blue. There are three ways we could succeed in selecting four 

marbles of the same color: all four red, all four white, or all four blue. We want the 

probability that one of these will happen, and that’s a disjunctive occurrence: 

 

P(all 4 red  all 4 white  all 4 blue) = ? 

 

                                                 
5 This makes good sense. If you throw a coin twice, there are four distinct ways things could go: (1) you throw heads 

twice; (2) you throw heads the first time, tails the second; (3) you throw tails the first time, heads the second; (4) you 

throw tails twice. In three out of those four scenarios (all but the last), you’ve thrown at least one head. 
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When we are calculating the probability of disjunctive occurrences, our first step is to ask 

whether the events involved are mutually exclusive. In this case, they clearly are. At most, 

one of the three events—all four red, all four white, all four blue—will happen (and 

probably none of them will); we can’t draw four marbles and have them all be red and all 

be white, for example. Since the events are mutually exclusive, we can use the Simple 

Addition Rule to calculate the probability of their disjunctive occurrence: 

 

P(all 4 red  all 4 white  all 4 blue) = P(all 4 red) + P(all 4 white) + P(all 4 blue) 

 

So we need to calculate the probabilities for each individual color—that all will be red, all 

white, and all blue—and add those together. Again, this is the kind of calculation we did 

earlier, in our first practice problem, when we calculated the probability of all four marbles 

being blue. We just have to do the same for red and white. These are calculations of the 

probabilities of conjunctive occurrences: 

 

P(R1 • R2 • R3 • R4) = ? 

P(W1 • W2 • W3 • W4) = ? 

 

(a) If we replace the marbles after drawing them, the events are independent, and so we 

can use the Simple Product Rule to do our calculations: 

 

P(R1 • R2 • R3 • R4) = P(R1) x P(R2) x P(R3) x P(R4) 

P(W1 • W2 • W3 • W4) = P(W1) x P(W2) x P(W3) x P(W4) 

 

Since 20 of the 100 marbles are red, the probability of each of the individual red selections 

is .2; since 50 of the marbles are white, the probability for each white selection is .5. 

 

P(R1 • R2 • R3 • R4) = .2 x .2 x .2 x .2 = .0016 

P(W1 • W2 • W3 • W4) = .5 x .5 x .5 x .5 = .0625 

 

In our earlier sample problem, we calculated the probability of picking four blue marbles: 

.0081. Putting these together, the probability of picking four marbles of the same color: 

 

P(all 4 red  all 4 white  all 4 blue) = P(all 4 red) + P(all 4 white) + P(all 4 blue) 

                                                            = .0016 + .0625 + .0081 

                                                            = .0722 

 

(b) If we don’t replace the marbles after each selection, the events are not independent, and 

so we must use the General Product Rule to do our calculations. The probability of selecting 

four red marbles is this: 

 

P(R1 • R2 • R3 • R4) = P(R1) x P(R2 | R1) x P(R3 | R1 • R2) x P(R4 | R1 • R2 • R3) 

 

We start with 20 out of 100 red marbles, so P(R1) = 20/100. On the second selection, we’re 

assuming the first red marble has been drawn already, so there are only 19 red marbles left 

out of a total of 99; P(R2 | R1) = 19/99. For the third selection, assuming that two red marbles 
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have been drawn, we have P(R3 | R1 • R2) = 18/98. And on the fourth selection, we have 

P(R4 | R1 • R2 • R3) = 17/97. 

 

P(R1 • R2 • R3 • R4) = 20/100 x 19/99 x 18/98 x 17/97 = .0012 (approximately) 

 

The same considerations apply to our calculation of drawing four white marbles, except 

that we start with 50 of those on the first draw: 

 

P(W1 • W2 • W3 • W4) = 50/100 x 49/99 x 48/98 x 47/97 = .0587 (approximately) 

 

In our earlier sample problem, we calculated the probability of picking four blue marbles 

as .007. Putting these together, the probability of picking four marbles of the same color: 

 

P(all 4 red  all 4 white  all 4 blue) = P(all 4 red) + P(all 4 white) + P(all 4 blue) 

                                                            = .0012 + .0587 + .007 

                                                                        = .0669 (approximately) 

 

As we would expect, there’s a slightly lower probability of selecting four marbles of the 

same color when we don’t replace them after each selection. 

 

We turn now to the second half of the problem, in which we are asked to calculate the 

probability that at least one of the four marbles selected will be red. The phrase ‘at least 

one’ is a clue: this is a disjunctive occurrence problem. We want to know the probability 

that the first marble will be red or the second will be red or the third or the fourth: 

 

P(R1  R2  R3  R4) = ? 

 

When our task is to calculate the probability of disjunctive occurrences, the first step is to 

ask whether the events are mutually exclusive. In this case, they are not. It’s not the case 

that at most one of our selections will be a red marble; we could pick two or three or even 

four (we calculated the probability of picking four just a minute ago). That means that we 

can’t use the Simple Addition Rule to make this calculation. Instead, we must calculate the 

probability indirectly, relying on the fact that P(success) = 1 - P(failure). We must subtract 

the probability that we don’t select any red marbles from 1: 

 

P(R1  R2  R3  R4) = 1 - P(no red marbles) 

 

As is always the case, the failure of a disjunctive occurrence is just a conjunction of 

individual failures. Not getting any red marbles is failing to get a red marble on the first 

draw and failing to get one on the second draw and failing on the third and on the fourth: 

 

P(R1  R2  R3  R4) = 1 - P(~ R1 • ~ R2 • ~ R3 • ~ R4) 

 

In this formulation, ‘~ R1’ stands for the eventuality of not drawing a red marble on the 

first selection, and the other terms for not getting red on the subsequent selections. Again, 

we’re just borrowing symbols from SL.  
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Now we’ve got a conjunctive occurrence problem to solve, and so the question to ask is 

whether the events ~ R1, ~ R2, and so on are independent or not. And the answer is that it 

depends on whether we replace the marbles after drawing them or not.  

 

(c) If we replace the marbles after each selection, then failure to pick red on one selection 

has no effect on the probability of failing to select red subsequently. It’s the same urn—

with 20 red marbles out of 100—for every pick. In that case, we can use the Simple Product 

Rule for our calculation: 

 

P(R1  R2  R3  R4) = 1 - [P(~ R1) x P(~ R2) x P(~ R3) x P(~ R4)] 

 

Since there are 20 red marbles, there are 80 non-red marbles, so the probability of picking 

a color other than red on any given selection is .8. 

 

P(R1  R2  R3  R4) = 1 - (.8 x .8 x .8 x .8) 

                                      = 1 - .4096 

                                      = .5904 

 

(d) If we don’t replace the marbles after each selection, then the events are not independent, 

and we must use the General Product Rule for our calculation. The quantity that we subtract 

from 1 will be this: 

 

P(~ R1) x P(~ R2 | ~ R1) x P(~ R3 | ~ R1 • ~ R2) x P(~ R4 | ~ R1 • ~ R2 • ~ R3) = ? 

 

On the first selection, our chances of picking a non-red marble are 80/100. On the second 

selection, assuming we chose a non-red marble the first time, our chances are 79/99. And on 

the third and fourth selections, the probabilities are 78/98 and 77/97, respectively. Multiplying 

all these together, we get .4033 (approximately), and so our calculation of the probability 

of getting at least one red marble looks like this: 

 

P(R1  R2  R3  R4) = 1 - .4033 = .5967 (approximately) 

 

We have a slightly better chance at getting a red marble if we don’t replace them, since 

each selection of a non-red marble makes the urn’s composition a little more red-heavy. 

 

 

EXERCISES 

 

1. Flip a coin 6 times; what’s the probability of getting heads every time? 

 

2. Go into a racquetball court and use duct tape to divide the floor into four quadrants of equal 

area. Throw three super-balls in random directions against the walls as hard as you can. What’s 

the probability that all three balls come to rest in the same quadrant? 

 

3. You’re at your grandma’s house for Christmas, and there’s a bowl of holiday-themed M&Ms—

red and green ones only. There are 500 candies in the bowl, with equal number of each color. Pick 
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one, note its color, then eat it. Pick another, note its color, and eat it. Pick a third, note its color, 

and eat it. What’s the probability that you ate three straight red M&Ms? 

 

4. You and two of your friends enter a raffle. There is one prize: a complete set of Ultra Secret 

Rare Pokémon cards. There are 1000 total tickets sold; only one is the winner. You buy 20, and 

your friends each buy 10. What’s the probability that one of you wins those Pokémon cards? 

 

5. You’re a 75% free-throw shooter. You get fouled attempting a 3-point shot, which means you 

get 3 free-throw attempts. What’s the probability that you make at least one of them? 

 

6. Roll two dice; what’s the probability of rolling a seven? How about an eight? 

 

7. In my county, 70% of people voted for Donald Trump. Pick three people at random. What’s the 

probability that at least one of them is a Trump voter? 

 

8. You see these two boxes here on the table? Each of them has jelly beans inside. We’re going to 

play a little game, at the end of which you have to pick a random jelly bean and eat it. Here’s the 

deal with the jelly beans. You may not be aware of this, but food scientists are able to create jelly 

beans with pretty much any flavor you want—and many you don’t want. There is, in fact, such a 

thing as vomit-flavored jelly beans.6 Anyway, in one of my two boxes, there are 100 total jelly 

beans, 8 of which are vomit-flavored (the rest are normal fruit flavors). In the other box, I have 50 

jelly beans, 7 of which are vomit-flavored. Remember, this all ends with you choosing a random 

jelly bean and eating it. But you have a choice between two methods of determining how it will 

go down: (a) You flip a coin, and the result of the flip determines which of the two boxes you 

choose a jelly bean from; (b) I dump all the jelly beans into the same box and you pick from that. 

Which option do you choose? Which one minimizes the probability that you’ll end up eating a 

vomit-flavored jelly bean? Or does it not make any difference? 

 

9. For men entering college, the probability that they will finish a degree within four years is .329; 

for women, it’s .438. Consider two freshmen—Albert and Betty. What’s the probability that at 

least one of them will fail to complete college in at least four years? What’s the probability that 

exactly one of them will succeed in doing so? 

 

10. I love Chex Mix. My favorite things in the mix are those little pumpernickel chips. But they’re 

relatively rare compared to the other ingredients. That’s OK, though, since my second-favorite are 

the Chex pieces themselves, and they’re pretty abundant. I don’t know what the exact ratios are, 

but let’s suppose that it’s 50% Chex cereal, 30% pretzels, 10% crunchy bread sticks, and 10% my 

beloved pumpernickel chips. Suppose I’ve got a big bowl of Chex Mix: 1,000 total pieces of food. 

If I eat three pieces from the bowl, (a) what’s the probability that at least one of them will be a 

pumpernickel chip? And (b) what’s the probability that either all three will be pumpernickel chips 

or all three will be my second-favorite—Chex pieces? 

 

11. You’re playing draw poker. Here’s how the game works: a poker hand is a combination of five 

cards; some combinations are better than others; in draw poker, you’re dealt an initial hand, and 

then, after a round of wagering, you’re given a chance to discard some of your cards (up to three) 

                                                 
6 Really: http://mentalfloss.com/article/62593/how-does-jelly-belly-create-its-weird-flavors 

http://mentalfloss.com/article/62593/how-does-jelly-belly-create-its-weird-flavors
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and draw new ones, hoping to improve your hand; after another round of betting, you see who 

wins. In this particular hand, you’re initially dealt a 7 of hearts and the 4, 5, 6, and King of spades. 

This hand is quite weak on its own, but it’s very close to being quite strong, in two ways: it’s close 

to being a “flush”, which is five cards of the same suit (you have four spades); it’s also close to 

being a “straight”, which is five cards of consecutive rank (you have four in a row in the 4, 5, 6, 

and 7). A flush beats a straight, but in this situation that doesn’t matter; based on how the other 

players acted during the first round of betting, you’re convinced that either the straight or the flush 

will win the money in the end. The question is, which one should you go for? Should you discard 

the King, hoping to draw a 3 or an 8 to complete your straight? Or should you discard the 7 of 

hearts, hoping to draw a spade to complete your flush? What’s the probability for each? You should 

pick whichever one is higher.7 

 

 

II.  Probability and Decision-Making: Value and Utility 

 

The future is uncertain, but we have to make decisions every day that have an effect on our 

prospects, financial and otherwise. Faced with uncertainty, we do not merely throw up our hands 

and guess randomly about what to do; instead, we assess the potential risks and benefits of a variety 

of options, and choose to act in a way that maximizes the probability of a beneficial outcome. 

Things won’t always turn out for the best, but we have to try to increase the chances that they will. 

To do so, we use our knowledge—or at least our best estimates—of the probabilities of future 

events to guide our decisions. 

 

The process of decision-making in the face of uncertainty is most clearly illustrated with examples 

involving financial decisions. When we make a financial investment, or—what’s effectively 

though not legally the same thing—a wager, we’re putting money at risk with the hope that it will 

pay off in a larger sum of money in the future. We need a way of deciding whether such bets are 

good ones or not. Of course, we can evaluate our financial decisions in hindsight, and deem the 

winning bets good choices and the losing ones bad choices, but that’s not a fair standard. The 

question is, knowing what we knew at the time we made our decision, did we make the choice that 

maximized the probability of a profitable outcome, even if the profit was not guaranteed? 

 

To evaluate the soundness of a wager or investment, then, we need to look not at its worth after 

the fact—its final value, we might say—but rather at the value we can reasonably expect it to have 

in the future, based on what we know at the time the decision is made. We’ll call this the expected 

value. To calculate the expected value of a wager or investment, we must take into consideration 

(a) the various possible ways in which the future might turn out that are relevant to our bet, (b) the 

value of our investment in those various circumstances, and (c) the probabilities that these various 

circumstances will come to pass. The expected value is a weighted average of the values in the 

different circumstances; it is weighted by the probabilities of each circumstance. Here is how we 

calculate expected value (EV): 

 

EV = P(O1) x V(O1) + P(O2) x V(O2) + … + P(On) x V(On) 

 

                                                 
7 Inspired by an exercise from Copi and Cohen, pp. 596 - 597 
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This formula is a sum; each term in the sum is the product of a probability and a value. The terms 

‘O1, O2, …, On’ refer to all the possible future outcomes that are relevant to our bet. P(Ox) is the 

probability that outcome #x will come to pass. V(Ox) is the value of our investment should outcome 

#x come to pass. 

 

Perhaps the simplest possible scenario we can use to illustrate how this calculation works is the 

following: you and your roommate are bored, so you decide to play a game; you’ll each put up a 

dollar, then flip a coin; if it comes up heads, you win all the money; if it comes up tails, she does.8 

What’s the expected value of your $1 bet? First, we need to consider which possible future 

circumstances are relevant to your bet’s value. Clearly, there are two: the coin comes up heads, 

and the coin comes up tails. There are two outcomes in our formula: O1 = heads, O2 = tails. The 

probability of each of these is 1/2. We must also consider the value of your investment in each of 

these circumstances. If heads comes up, the value is $2—you keep your dollar and snag hers, too. 

If tails comes up, the value is $0—you look on in horror as she pockets both bills. (Note: value is 

different from profit. You make a profit of $1 if heads comes up, and you suffer a loss of $1 if tails 

does—or your profit is -$1. Value is how much money you’re holding at the end.) Plugging the 

numbers into the formula, we get the expected value: 

 

EV = P(heads) x V(heads) + P(tails) x V(tails) = 1/2 x $2 + 1/2 x $0 = $1 

 

The expected value of your $1 bet is $1. You invested a dollar with the expectation of a dollar in 

return. This is neither a good nor a bad bet. A good bet is one for which the expected value is 

greater than the amount invested; a bad bet is one for which it’s less. 

 

This suggests a standard for evaluating financial decisions in the real world: people should look to 

put their money to work in such a way that the expected value of their investments is as high as 

possible (and, of course, higher than the invested amount). Suppose I have $1,000 free to invest. 

One way to put that money to work would be to stick it in a money market account, which is a 

special kind of savings deposit account one can open with a bank. Such accounts offer a return on 

your investment in the form of a payment of a certain amount of interest—a percentage of your 

deposit amount. Interest is typically specified as a yearly rate. So a money market account offering 

a 1% rate pays me 1% of my deposit amount after a year.9 Let’s calculate the expected value of an 

investment of my $1,000 in such an account. We need to consider the possible outcomes that are 

relevant to my investment. I can only think of two possibilities: at the end of the year, the bank 

pays me my money; or, at the end of the year, I get stiffed—no money. The calculation looks like 

this: 

 

EV = P(paid) x V(paid) + P(stiffed) x V(stiffed) 

 

One of the things that makes this kind of investment attractive is that it’s virtually risk-free. Bank 

deposits of up to $250,000 are insured by the federal government.10 So even if the bank goes out 

                                                 
8 In this and what follows, I am indebted to Copi and Cohen’s presentation for inspiration. 
9 It’s more complicated than this, but we’re simplifying to make things easier. 
10 They’re insured through the FDIC—Federal Deposit Insurance Corporation—created during the Great Depression 

to prevent bank runs. Before this government insurance on deposits, if people thought a bank was in trouble, everybody 

tried to withdraw their money at the same time; that’s a “bank run”. Think about the scene in It’s a Wonderful Life 
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of business before I withdraw my money, I’ll still get paid in the end.11 That means P(paid) = 1 

and P(stiffed) = 0. Nice. What’s the value when I get paid? It’s the initial $1,000 plus the 1% 

interest. 1% of $1,000 is $10, so V(paid) = $1,010. 

 

That’s not much of a return, but interest rates are low these days, and it’s not a risky investment. 

We could increase the expected value if we put our money into something that’s not a sure thing. 

One option is corporate bonds. For this type of investment, you lend your money to a company for 

a specified period of time (and they use it to build a factory or something), then you get paid back 

the principal investment plus some interest.12 Corporate bonds are a riskier investment than bank 

deposits because they’re no insured by the federal government. If you company goes bankrupt 

before the date you’re supposed to get paid back, you lose your money.13 That is, P(paid) in the 

expected value calculation above is no longer 1; P(stiffed) is somewhere north of 0. What are the 

relevant probabilities? Well, it depends on the company. There are firms in the “credit rating” 

business—Moody’s, S&P, Fitch, etc.—that put out reports and classify companies according to 

how risky they are to loan money to. They assign ratings like ‘AAA’ (or ‘Aaa’, depending on the 

agency), ‘AA’, ‘BBB’, ‘CC’, and so on. The further into the alphabet you get, the higher the 

probability you’ll get stiffed. It’s impossible to say exactly what that probability is, of course; the 

credit rating agencies provide a rough guide, but ultimately it’s up to the individual investor to 

decide what the risks are and whether they’re worth it.14 

 

To determine whether the risks are worth it, we must compare the expected value of an investment 

in a corporate bond with a baseline, risk-free investment—like our money market account above. 

Since the probability of getting paid is less than 1, we must have a higher yield than 1% to justify 

choosing the corporate bond over the safer investment. How much higher? It depends on the 

company; it depends on how likely it is that we’ll get paid back in the end.  

 

The expected value calculation is simple in these kinds of cases. Even though P(stiffed) is not 0, 

V(stiffed) is; if we get stiffed, our investment is worth nothing. So when calculating expected 

value, we can ignore the second term in the sum. All we have to do is multiply P(paid) by V(paid).  

 

Suppose we’re considering investing in a really reliable company; let’s say P(paid) = .99. Doing 

the math, in order for a corporate bond with this reliable company to be a better bet than a money 

market account, they’d have offer an interest rate of a little more than 2%. If we consider a less-

reliable company—say one for which P(paid) = .95—then we’d need a rate of little more than 

                                                 
when George is about to leave on his honeymoon, but he has to go back to the Bailey Building and Loan to prevent 

such a catastrophe. Anyway, if everybody knows they’ll get their money back even if the bank goes under, such things 

won’t happen; that’s what the FDIC is for. 
11 Unless, of course, the federal government goes out of business. But in that case, $1,000 is useful maybe as 

emergency toilet paper; I need canned goods and ammo at that point. 
12 Again, there are all sorts of complications we’re glossing over to keep things simple. 
13 Probably. There are different kinds of bankruptcies and lots of laws governing them; it’s possible for investors to 

get some money back in probate court. But it’s complicated. One thing’s for sure: our measly $1,000 imaginary 

investment makes us too small-time to have much of a chance of getting paid during bankruptcy proceedings. 
14 Historical data on the probability of default for companies at different ratings by agency are available. 
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6.3% to make this a better investment. If we go down to a 90% chance of getting paid back, we 

need a yield of more than 12% to justify that decision.15 

 

What does it mean to be a good, rational economic agent? How should a person, generally 

speaking, invest money? As we mentioned earlier, a plausible rule governing such decisions would 

be something like this: always choose the investment for which expected value is maximized.  

 

But real people deviate from this rule in their monetary decisions, and it’s not at all clear that 

they’re irrational to do so. Consider the following choice: (a) we’ll flip a coin, and if it comes up 

heads, you win $1,000, but if it comes up tails, you win nothing; (b) no coin flip, you just win 

$499, guaranteed. The expected value of choice (b) is just the guaranteed $499. The value of choice 

(a) can be easily calculated: 

 

EV = P(heads) x V(heads) + P(tails) x V(tails) 

      = (.5 x $1,000) + (.5 x $0) 

      = $500 

 

So according to our principle, it’s always rational to choose (a) over (b): $500 > $499. But in real 

life, most people who are offered such a choice go with the sure-thing, (b). (If you don’t share that 

intuition, try upping the stakes—coin flip for $10,000 vs. $4,999 for sure.) Are people who make 

such a choice behaving irrationally? 

 

Not necessarily. What such examples show is that people take into consideration not merely the 

value, in dollars, of various choices, but the subjective significance of their outcomes—the degree 

to which they contribute to the person’s overall well-being. As opposed to ‘value’, we use the term 

‘utility’ to refer to such considerations. In real life decisions, what matters is not the expected value 

of an investment choice, but its expected utility—the degree to which it satisfies a person’s desires, 

comports with subjective preferences.  

 

The tendency of people to accept a sure thing over a risky wager, despite a lower expected value, 

is referred to as risk aversion. This is the consequence of an idea first formalized by the 

mathematician Daniel Bernoulli in 1738: the diminishing marginal utility of wealth. The basic idea 

is that as the amount of money one has increases, each addition to one’s fortune becomes less 

important, from a personal, subjective point of view. An extra $1,000 means very little to Bill 

Gates; an extra $1,000 for a poor college student would mean quite a lot. The money would add 

very little utility for Gates, but much more for the college student. Increases in one’s fortune above 

                                                 
15 Considerations like these are apparently the spark that lit the fuse on the financial crisis of late 2008. On September 

15th of that year, the financial services firm Lehman Brothers filed for bankruptcy—the largest bankruptcy filing in 

history. The stock market went into a free-fall, and the economy ground to a halt. The problem was borrowing: 

companies couldn’t raise money in the usual way with corporate bonds. Such borrowing is the grease that keeps the 

engine of the economy running; without it, firms can’t fund their day-to-day operations. The reason companies 

couldn’t borrow was that investors were demanding too high a rate of interest. They were doing this because their 

personal estimations of P(paid) were all revised downward in the wake of Lehman’s bankruptcy: that was considered 

a reliable company to lend to; if they could go under, anybody could. 
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zero mean more than subsequent increases. Bernoulli’s utility function looked something like 

this16: 

 

 
This explains the choice of the $499 sure-thing over the coin flip for $1,000. The utility attached 

to those first $499 is greater than the extra utility of the additional possible $501 dollars one could 

potentially win, so people opt to lock in the gain. Utility rises quickly at first, but levels out at 

higher amounts. From Bernoulli’s chart, the utility of the sure-thing is somewhere around 70, while 

the utility of the full $1,000 is only 30 more—100. Computing the expected utility of the coin-flip 

wager gives us this result: 

 

EU = P(heads) x U(heads) + P(tails) x U(tails) 

      = (.5 x 100) + (.5 x 0) 

      = 50 

 

The utility of 70 for the sure-thing easily beats the expected utility from the wager. It is possible 

to get people to accept risky bets over sure-things, but one must take into account this diminishing 

marginal utility. For a person whose personal utility function is like Bernoulli’s, an offer of a mere 

$300 (where the utility is down closer to 50) would make the decision more difficult. An offer of 

$200 would cause them to choose the coin flip. 

 

It has long been accepted economic doctrine that rational economic agents act in such a way as to 

maximize their utility, not their value. It is a matter of some dispute what sort of utility function 

best captures rational economic agency. Different economic theories assume different versions of 

ideal rationality for the agents in their models.  

 

Recently, this practice of assuming perfect utility-maximizing rationality of economic agents has 

been challenged. While it’s true that the economic models generated under such assumptions can 

                                                 
16 This function maps 1 unit of wealth to 10 units of utility (never mind what those units are). 2 units of wealth 

produces 30 units of utility, and so on: 3 – 48; 4 – 60; 5 – 70; 6 – 78; 7 – 84; 8 – 90; 9 – 96; 10 – 100. This mapping 

comes from Daniel Kahneman, 2011, Thinking, Fast and Slow, New York: Farrar, Strauss, and Giroux, p. 273. 
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provide useful results, as a matter of fact, the behavior of real people (homo sapiens as opposed to 

“homo economicus”—the idealized economic man of the models) departs in predictable ways from 

the utility-maximizing ideal. Psychologists—especially Daniel Kahneman and Amos Tversky—

have conducted a number of experiments that demonstrate pretty conclusively that people 

regularly behave in ways that, by the lights of economic theory, are irrational. For example, 

consider the following two scenarios (go slowly; think about your choices carefully): 

 

(1) You have $1,000. Which would you choose? 

 (a) Coin flip. Heads, you win another $1,000; tails, you win nothing. 

 (b) An additional $500 for sure. 

 

(2) You have $2,000. Which would you choose? 

 (a) Coin flip. Heads you lose $1,000; tails, you lose nothing. 

 (b) Lose $500 for sure.17 

 

According to the Utility Theory of Bernoulli and contemporary economics, the rational agent 

would choose option (b) in each scenario. Though they start in different places, for each scenario 

option (a) is just a coin flip between $1,000 and $2,000, while (b) is $1,500 for sure. Because of 

the diminishing marginal utility of wealth, (b) is the utility-maximizing choice each time. But as a 

matter of fact, most people choose option (b) only in the first scenario; they choose option (a) in 

the second. (If you don’t share this intuition, try upping the stakes.) It turns out that most people 

dislike losing more than they like winning, so the prospect of a guaranteed loss in 2(b) is repugnant. 

Another example: would you accept a wager on a coin flip, where heads wins you $1,500, but tails 

loses you $1,000? Most people would not. (Again, if you’re different, try upping the stakes.) And 

this despite the fact that clearly expected value and utility point to accepting the proposition. 

 

Kahneman and Tversky’s alternative to Utility Theory is called “Prospect Theory”. It accounts for 

these and many other observed regularities in human economic behavior. For example, people’s 

willingness to overpay for a very small chance at a very large gain (lottery tickets); also, their 

willingness to pay a premium to eliminate small risks (insurance); their willingness to take on risk 

to avoid large losses; and so on.18 

 

It’s debatable whether the observed deviations from idealized utility-maximizing behavior are 

rational or not. The question “What is an ideally rational economic agent?” is not one that we can 

answer easily. That’s a question for philosophers to grapple with. The question that economists 

are grappling with is whether, and to what extent, they must incorporate these psychological 

regularities into their models. Real people are not the utility-maximizers the models say they are. 

Can we get more reliable economic predictions by taking their actual behavior into account? 

Behavioral economics is the branch of that discipline that answers this question in the affirmative. 

It is a rapidly developing field of research. 

 

 

 

                                                 
17 For this and many other examples, see Kahneman 2011. 
18 Again, see Kahneman 2011 for details. 
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EXERCISES 

 

1. You buy a $1 ticket in a raffle. There are 1,000 tickets sold. Tickets are selected out of one of 

those big round drums at random. There are 3 prizes: first prize is $500; second prize is $200; third 

prize is $100. What’s the expected value of your ticket? 

 

2. On the eve of the 2016 U.S. presidential election, the poll-aggregating website 538.com 

predicted that Donald Trump had a 30% chance of winning. It’s possible to wager on these sorts 

of things, believe it or not (with bookmakers or in “prediction markets”). On election night, right 

before 8:00pm EST, the “money line” odds on a Trump victory were +475. That means that a 

wager of $100 on Trump would earn $475 in profit, for a total final value of $575. Assuming the 

538.com crew had the probability of a Trump victory right, what was the expected value of a $100 

wager at 8:00pm at the odds listed? 

 

3. You’re offered three chances to roll a one with a fair die. You put up $10 and your challenger 

puts up $10. If you succeed in rolling one even once, you win all the money; if you fail, your 

challenger gets all the money. Should you accept the challenge? Why or why not? 

 

4. You’re considering placing a wager on a horse race. The horse you’re considering is a long-

shot; the odds are 19 to 1. That means that for every dollar you wager, you’d win $19 in profit 

(which means $20 total in your pocket afterwards). How probable must it be that the horse will 

win for this to be a good wager (in the sense that the expected value is greater than the amount 

bet)? 

 

5. I’m looking for a good deal in the junk bond market. These are highly risky corporate bonds; 

the risk is compensated for with higher yields. Suppose I find a company that I think has a 25% 

chance of going bankrupt before the bond matures. How high of a yield do I need to be offered to 

make this a good investment (again, in the sense that the expected value is greater than the price 

of the investment)? 

 

6. For someone with a utility function like that described by Bernoulli (see above), what would 

their choice be if you offered them the following two options: (a) coin flip, with heads winning 

$8,000 and tails winning $2,000; (b) $5,000 guaranteed? Explain why they would make that 

choice, in terms of expected utility. How would increasing the lower prize on the coin-flip option 

change things, if at all? Suppose we increased it to $3,000. Or $4,000. Explain your answers. 

 

 

III.  Probability and Belief: Bayesian Reasoning 

 

The great Scottish philosopher David Hume, in his An Enquiry Concerning Human 

Understanding, wrote, “In our reasonings concerning matter of fact, there are all imaginable 

degrees of assurance, from the highest certainty to the lowest species of moral evidence. A wise 

man, therefore, proportions his belief to the evidence.” Hume is making a very important point 

about a kind of reasoning that we engage in every day: the adjustment of beliefs in light of 

evidence. We believe things with varying degrees of certainty, and as we make observations or 
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learn new things that bear on those beliefs, we make adjustments to our beliefs, becoming more or 

less certain accordingly. Or, at least, that’s what we ought to do. Hume’s point is an important one 

because too often people do not adjust their beliefs when confronted with evidence—especially 

evidence against their cherished opinions. One needn’t look far to see people behaving in this way: 

the persistence and ubiquity of the beliefs, for example, that vaccines cause autism, or that global 

warming is a myth, despite overwhelming evidence to the contrary, are a testament to the 

widespread failure of people to proportion their beliefs to the evidence, to a general lack of 

“wisdom”, as Hume puts it. 

 

Here we have a reasoning process—adjusting beliefs in light of evidence—which can be done well 

or badly. We need a way to distinguish good instances of this kind of reasoning from bad ones. 

We need a logic. As it happens, the tools for constructing such a logic are ready to hand: we can 

use the probability calculus to evaluate this kind of reasoning. 

 

Our logic will be simple: it will be a formula providing an abstract model of perfectly rational 

belief-revision. The formula will tell us how to compute a conditional probability. It’s named after 

the 18th century English reverend who first formulated it: Thomas Bayes. It is called “Bayes’ Law” 

and reasoning according to its strictures is called “Bayesian reasoning”. 

 

At this point, you will naturally be asking yourself something like this: “What on Earth does a 

theorem about probability have to do with adjusting beliefs based on evidence?” Excellent 

question; I’m glad you asked. As Hume mentioned in the quote we started with, our beliefs come 

with varying degrees of certainty. Here, for example, are three things I believe: (a) 1 + 1 = 2; (b) 

the earth is approximately 93 million miles from the sun (on average); (c) I am related to Winston 

Churchill. I’ve listed them in descending order: I’m most confident in (a), least confident in (c). 

I’m more confident in (a) than (b), since I can figure out that 1 + 1 = 2 on my own, whereas I have 

to rely on the testimony of others for the Earth-to-Sun distance. Still, that testimony gives me a 

much stronger belief than does the testimony that is the source of (c). My relation to Churchill is 

apparently through my maternal grandmother; the details are hazy. Still, she and everybody else 

in the family always said we were related to him, so I believe it. 

 

“Fine,” you’re thinking, “but what does this have to do with probabilities?” Our degrees of belief 

in particular claims can vary between two extremes: complete doubt and absolute certainty. We 

could assign numbers to those states: complete doubt is 0; absolute certainty is 1. Probabilities also 

vary between 0 and 1! It’s natural to represent degrees of beliefs as probabilities. This is one of 

the philosophical interpretations of what probabilities really are.19 It’s the so-called “subjective” 

interpretation, since degrees of belief are subjective states of mind; we call these “personal 

probabilities”. Think of rolling a die. The probability that it will come up showing a one is 1/6. One 

way of understanding what that means is to say that, before the die was thrown, the degree to 

which you believed the proposition that the die will come up showing one—the amount of 

confidence you had in that claim—was 1/6. You would’ve had more confidence in the claim that it 

would come up showing an odd number—a degree of belief of 1/2. 

 

                                                 
19 There’s a whole literature on this. See this article for an overview: Hájek, Alan, "Interpretations of Probability", The 

Stanford Encyclopedia of Philosophy (Winter 2012 Edition), Edward N. Zalta (ed.), URL = 

<https://plato.stanford.edu/archives/win2012/entries/probability-interpret/>. 
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We’re talking about the process of revising our beliefs when we’re confronted with evidence. In 

terms of probabilities, that means raising or lowering our personal probabilities as warranted by 

the evidence. Suppose, for example, that I was visiting my grandmother’s hometown and ran into 

a friend of hers from way back. In the course of the conversation, I mention how grandma was 

related to Churchill. “That’s funny,” says the friend, “your grandmother always told me she was 

related to Mussolini.” I’ve just received some evidence that bears on my belief that I’m related to 

Churchill. I never heard this Mussolini claim before. I’m starting to suspect that my grandmother 

had an odd eccentricity: she enjoyed telling people that she was related to famous leaders during 

World War II. (I wonder if she ever claimed to be related to Stalin. FDR? Let’s pray Hitler was 

never invoked. And Hirohito would strain credulity; my grandma was clearly not Japanese.) In 

response to this evidence, if I’m being rational, I would revise my belief that I’m related to Winston 

Churchill: I would lower my personal probability for that belief; I would believe it less strongly. 

If, on the other hand, my visit to my grandma’s hometown produced a different bit of evidence—

let’s say a relative had done the relevant research and produced a family genealogy tracing the 

relation to Churchill—then I would revise my belief in the other direction, increasing my personal 

probability, believing it more strongly. 

 

Since belief-revision in this sense just involves adjusting probabilities, our model for how it works 

is just a means of calculating the relevant probabilities. That’s why our logic can take the form of 

an equation. We want to know how strongly we should believe something, given some evidence 

about it. That’s a conditional probability. Let ‘H’ stand for a generic hypothesis—something we 

believe to some degree or other; let ‘E’ stand for some evidence we discover. What we want to 

know is how to calculate P(H | E)—the probability of H given E, how strongly we should believe 

H in light of the discovery of E. 

 

Bayes’ Law tells us how to perform this calculation. Here’s one version of the equation20: 

 

                      P(H) x P(E | H) 

P(H | E)  =    

                             P(E) 

 

This equation has some nice features. First of all, the presence of ‘P(H)’ in the numerator is 

intuitive. This is often referred to as the “prior probability” (or “prior” for short); it’s the degree to 

which the hypothesis was believed prior to the discovery of the evidence. It makes sense that this 

would be part of the calculation: how strongly I believe in something now ought to be (at least in 

part) a function of how strongly I used to believe it. Second, ‘P(E | H)’ is a useful item to have in 

the calculation, since it’s often a probability that can be known. Notice, this is the reverse of the 

conditional probability we’re trying to calculate: it’s the probability of the evidence, assuming that 

the hypothesis is true (it may not be, but we assume it is, as they say, “for the sake of argument”). 

Consider an example: as you may know, being sick in the morning can be a sign of pregnancy; if 

this were happening to you, the hypothesis you’d be entertaining would be that you’re pregnant, 

and the evidence would be vomiting in the morning. The conditional probability you’re interested 

                                                 
20 It’s easy to derive this theorem, starting with the general product rule. We know P(E • H) = P(E) x P(H | E), no 

matter what ‘E’ and ‘H’ stand for. A little algebraic manipulation gives us P(H | E) = P(E • H) / P(E). It’s a truth of 

logic that the expression ‘E • H’ is equivalent to ‘H • E’, so we can replace ‘P(E • H)’ with ‘P(H • E)’ in the numerator. 

And again, by the general product rule, P(H • E) = P(H) x P(E | H)—our final numerator. 
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in is P(pregnant | vomiting)—that is, the probability that you’re pregnant, given that you’ve been 

throwing up in the morning. Part of using Bayes’ Law to make this calculation involves the reverse 

of that conditional probability: P(vomiting | pregnant)—the probability that you’d be throwing up 

in the morning, assuming (for the sake of argument) that you are in fact pregnant. And that’s 

something we can just look up; studies have been done. It turns out that about 60% of women 

experience have morning sickness (to the point of throwing up) during the first trimester of 

pregnancy. There are lots of facts like this available. Did you know that a craving for ice is a 

potential sign of anemia? Apparently it is: 44% of anemia patients have the desire to eat ice. Similar 

examples are not hard to find. It’s worth noting, in addition, that sometimes the reverse probability 

in question—P(E | H)—is 1. In the case of a prediction made by a scientific hypothesis, this is so. 

Isaac Newton’s theory of universal gravitation, for example, predicts that objects dropped from 

the same height will take the same amount of time to reach the ground, regardless of their weights 

(provided that air resistance is not a factor). This prediction is just a mathematical result of the 

equation governing gravitational attraction. So if H is Newton’s theory and E is a bowling ball and 

a feather taking the same amount of time to fall, then P(E | H) = 1; if Newton’s theory is true, then 

it’s a mathematical certainty that the evidence will be observed.21 

 

So this version of Bayes’ Law is attractive because of both probabilities in the numerator: P(H), 

the prior probability, is natural, since the adjusted degree of belief ought to depend on the prior 

degree of belief; and P(E | H) is useful, since it’s a probability that we can often know precisely. 

The formula is also nice in that it comports well with our intuitions about how belief-revision 

ought to work. It does this in three ways.  

 

First, we know that implausible hypotheses are hard to get people to believe; as Carl Sagan once 

put it, “Extraordinary claims require extraordinary evidence.” Putting this in terms of personal 

probabilities, an implausible hypothesis—and extraordinary claim—is just one with a low prior: 

P(H) is a small fraction. Consider an example. In the immediate aftermath of the 2016 U.S. 

presidential election, some people claimed that the election was rigged (possibly by Russia) in 

favor of Donald Trump by way of a massive computer hacking scheme that manipulated the vote 

totals in key precincts.22 I had very little confidence in this hypothesis—I gave it an extremely low 

prior probability—for lots of reasons, but two in particular: (a) Voting machines in individual 

precincts are not networked together, so any hacking scheme would have to be carried out on a 

machine-by-machine basis across hundreds—if not thousands—of precincts, an operation of 

almost impossible complexity; (b) An organization with practically unlimited financial resources 

and the strongest possible motivation for uncovering such a scheme—namely, the Clinton 

campaign—looked at the data and concluded there was nothing fishy going on. But none of this 

stopped wishful-thinking Clinton-supporters from digging for evidence that in fact the fix had been 

in for Trump.23 When people presented me with this kind of evidence—look at these suspiciously 

high turnout numbers from a handful of precincts in rural Wisconsin!—my degree of belief in the 

hypothesis—that the Russians had hacked the election—barely budged. This is proper; again, 

extraordinary claims require extraordinary evidence, and I wasn’t seeing it. This intuitive fact 

                                                 
21 Provided you set things up carefully. Check out this video: https://www.youtube.com/watch?v=E43-CfukEgs. 
22 Note: this is separate from the highly plausible claim that the Russians hacked e-mails from the Democratic National 

Committee and released them to the media before the election. 
23 Here’s a representative rundown: http://www.dailykos.com/story/2016/11/20/1602092/-HRC-Campaign-Please-

challenge-the-vote-in-4-States-as-the-data-says-you-won-NC-PA-WI-FL 

https://www.youtube.com/watch?v=E43-CfukEgs
http://www.dailykos.com/story/2016/11/20/1602092/-HRC-Campaign-Please-challenge-the-vote-in-4-States-as-the-data-says-you-won-NC-PA-WI-FL
http://www.dailykos.com/story/2016/11/20/1602092/-HRC-Campaign-Please-challenge-the-vote-in-4-States-as-the-data-says-you-won-NC-PA-WI-FL


 Probability and Statistics 197 

 

about how belief-revision is supposed to work is borne out by the equation for Bayes’ Law. 

Implausible hypotheses have a low prior—P(H) is a small fraction. It’s hard to increase our degree 

of belief in such propositions—P(H | E) doesn’t easily rise—simply because we’re multiplying by 

a low fraction in the numerator when calculating the new probability. 

 

The math mirrors the actual mechanics of belief-revision in two more ways. Here’s a truism: the 

more strongly predictive piece of evidence is for a given hypothesis, the more it supports that 

hypothesis when we observe it. We saw above that women who are pregnant experience morning 

sickness about 60% of the time; also, patients suffering from anemia crave ice (for some reason) 

44% of the time. In other words, throwing up in the morning is more strongly predictive of 

pregnancy than ice-craving is of anemia. Morning sickness would increase belief in the hypothesis 

of pregnancy more than ice-craving would increase belief in anemia. Again, this banal observation 

is borne out in the equation for Bayes’ Law. When we’re calculating how strongly we should 

believe in a hypothesis in light of evidence—P(H | E)—we always multiply in the numerator by 

the reverse conditional probability—P(E | H)—the probability that you’d observe the evidence, 

assuming the hypothesis is true. For pregnancy/sickness, this means multiplying by .6; for 

anemia/ice-craving, we multiply by .44. In the former case, we’re multiplying by a higher number, 

so our degree of belief increases more. 

 

A third intuitive fact about belief-revision that our equation correctly captures is this: surprising 

evidence provides strong confirmation of a hypothesis. Consider the example of Albert Einstein’s 

general theory of relativity, which provided a new way of understanding gravity: the presence of 

massive objects in a particular region of space affects the geometry of space itself, causing it to be 

curved in that vicinity. Einstein’s theory has a number of surprising consequences, one of which 

is that because space is warped around massive objects, light will not travel in a straight line in 

those places.24 In this example, H is Einstein’s general theory of relativity, and E is an observation 

of light following a curvy path. When Einstein first put forward his theory in 1915, it was met with 

incredulity by the scientific community, not least because of this astonishing prediction. Light 

bending? Crazy! And yet, four years later, Arthur Eddington, an English astronomer, devised and 

executed an experiment in which just such an effect was observed. He took pictures of stars in the 

night sky, then kept his camera trained on the same spot and took another picture during an eclipse 

of the sun (the only time the stars would also be visible during the day). The new picture showed 

the stars in slightly different positions, because during the eclipse, their light had to pass near the 

sun, whose mass caused their path to be deflected slightly, just as Einstein predicted. As soon as 

Eddington made his results public, newspapers around the world announced the confirmation of 

general relativity and Einstein became a star. As we said, surprising results provide strong 

confirmation; hardly anything could be more surprising that light bending. We can put this in terms 

of personal probabilities. Bending light was the evidence, so P(E) represents the degree of belief 

someone would have in the proposition that light will travel a curvy path. This was a very low 

number before Eddington’s experiments. When we use is to calculate how strongly we should 

believe in general relativity given the evidence that light in fact bends—P(H | E)—it’s in the 

denominator of our equation. Dividing by a very small fraction means multiplying by its 

reciprocal, which is a very large number. This makes P(H | E) go up dramatically. Again, the math 

mirrors actual reasoning practice. 

 

                                                 
24 Or, it is travelling a straight line, just through a space that is curved. Same thing. 
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So, our initial formulation of Bayes’ Law has a number of attractive features; it comports well with 

our intuitions about how belief-revision actually works. But it is not the version of Bayes’ Law 

that we will settle on the make actual calculations. Instead, we will use a version that replaces the 

denominator—P(E)—with something else. This is because that term is a bit tricky. It’s the prior 

probability of the evidence. That’s another subjective state—how strongly you believed the 

evidence would be observed prior to its actual observation, or something like that. Subjectivity 

isn’t a bad thing in this context; we’re trying to figure out how to adjust subjective states (degrees 

of belief), after all. But the more of it we can remove from the calculation, the more reliable our 

results. As we discussed, the subjective prior probability for the hypothesis in question—P(H)—

belongs in our equation: how strongly we believe in something now ought to be a function of how 

strongly we used to believe in it. The other item in the numerator—P(E | H)—is most welcome, 

since it’s something we can often just look up—an objective fact. But P(E) is problematic. It makes 

sense in the case of light bending and general relativity. But consider the example where I run into 

my grandma’s old acquaintance and she tells me about her claims to be related to Mussolini. What 

was my prior for that? It’s not clear there even was one; the possibility probably never even 

occurred to me. I’d like to get rid of the present denominator and replace it with the kinds of terms 

I like—those in the numerator. 

 

I can do this rather easily. To see how, it will be helpful to consider the fact that when we’re 

evaluating a hypothesis in light of some evidence, there are often alternative hypotheses that it’s 

competing with. Suppose I’ve got a funny looking rash on my skin; this is the evidence. I want to 

know what’s causing it. I may come up with a number of possible explanations. It’s winter, so 

maybe it’s just dry skin; that’s one hypothesis. Call it ‘H1’. Another possibility: we’ve just started 

using a new laundry detergent at my house; maybe I’m having a reaction. H2 = detergent. Maybe 

it’s more serious, though. I get on the Google and start searching. H3 = psoriasis (a kind of skin 

disease). Then my hypochondria gets out of control, and I get really scared: H4 = leprosy. That’s 

all I can think of, but it may not be any of those: H5 = some other cause.  

 

I’ve got five possible explanations for my rash—five hypotheses I might believe in to some degree 

in light of the evidence. Notice that the list is exhaustive: since I added H5 (something else), one 

of the five hypotheses will explain the rash. Since this is the case, we can say with certainty that I 

have a rash and it’s caused by the cold, or I have a rash and it’s caused by the detergent, or I have 

a rash and it’s caused by psoriasis, or I have a rash and it’s caused by leprosy, or I have a rash and 

it’s caused by something else. Generally speaking, when a list of hypotheses is exhaustive of the 

possibilities, the following is a truth of logic: 

 

E  (E • H1)  (E • H2)  …  (E • Hn) 

 

For each of the conjunctions, it doesn’t matter what order you put the conjuncts, so this true, too: 

 

E  (H1 • E)  (H2 • E)  …  (Hn • E) 

 

Remember, we’re trying to replace P(E) in the denominator of our formula. Well, if E is equivalent 

to that long disjunction, then P(E) is equal to the probability of the disjunction: 

 

P(E) = P[(H1 • E)  (H2 • E)  …  (Hn • E)] 
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We’re calculating a disjunctive probability. If we assume that the hypotheses are mutually 

exclusive (only one of them can be true), then we can use the Simple Addition Rule25: 

 

P(E) = P(H1 • E) + P(H2 • E) + … + P(Hn • E) 

 

Each item in the sum is a conjunctive probability calculation, for which we can use the General 

Product Rule: 

 

P(E) = P(H1) x P(E | H1) + P(H2) x P(E | H2) + … + P(Hn) x P(E | Hn) 

 

And look what we have there: each item in the sum is now a product of exactly the two types of 

terms that I like—a prior probability for a hypothesis, and the reverse conditional probability of 

the evidence assuming the hypothesis is true (the thing I can often just look up). I didn’t like my 

old denominator, but it’s equivalent to something I love. So I’ll replace it. This is our final version 

of Bayes’ Law: 

 

                                                      P(Hk) x P(E | Hk) 

P(Hk | E)  =      [1  k  n]26 

                      P(H1) x P(E | H1) + P(H2) x P(E | H2) + … + P(Hn) x P(E | Hn) 

 

Let’s see how this works in practice. Consider the following scenario: 

 

Your mom does the grocery shopping at your house. She goes to two stores: Fairsley Foods 

and Gibbons’ Market. Gibbons’ in closer to home, so she goes there more often—80% of 

the time. Fairsley sometimes has great deals, though, so she drives the extra distance and 

shops there 20% of the time.  

 

You can’t stand Fairsley. First of all, they’ve got these annoying commercials with the 

crazy owner shouting into the camera and acting like a fool. Second, you got lost in there 

once when you were a little kid and you’ve still got emotional scars. Finally, their produce 

section is terrible: in particular, their peaches—your favorite fruit—are often mealy and 

bland, practically inedible. In fact, you’re so obsessed with good peaches that you made a 

study of it, collecting samples over a period of time from both stores, tasting and recording 

your data. It turns out that peaches from Fairsley are bad 40% of the time, while those from 

Gibbons’ are only bad 20% of the time. (Peaches are a fickle fruit; you’ve got to expect 

some bad ones no matter how much care you take.) 

 

Anyway, one fine day you walk into the kitchen and notice a heaping mound of peaches in 

the fruit basket; mom apparently just went shopping. Licking your lips, you grab a peach 

and take a bite. Ugh! Mealy, bland—horrible. “Stupid Fairsley,” you mutter as you spit out 

the fruit. Question: is your belief that the peach came from Fairsley rational? How strongly 

should you believe that it came from that store? 

                                                 
25 I know. In the example, maybe it’s the cold weather and the new detergent causing my rash. Let’s set that possibility 

aside. 
26 We add the subscript ‘k’ to the hypothesis we’re entertaining, and stipulate the k is between 1 and n simply to ensure 

that the hypothesis in question is among the set of exhaustive, mutually exclusive possibilities H1, H2, …, Hn. 
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This is the kind of question Bayes’ Law can help us answer. It’s asking us about how strongly we 

should believe in something; that’s just calculating a (conditional) probability. We want to know 

how strongly we should believe that the peach came from Fairsley; that’s our hypothesis. Let’s 

call it ‘F’. These types of calculations are always of conditional probabilities: we want the 

probability of the hypothesis given the evidence. In this case, the evidence is that the peach was 

bad; let’s call that ‘B’. So the probability we want to calculate is P(F | B)—the probability that the 

peach came from Fairsley given that it’s bad. 

 

At this point, we reference Bayes’ Law and plug things into the formula. In the numerator, we 

want the prior probability for our hypothesis, and the reverse conditional probability of the 

evidence assuming the hypothesis is true: 

 

                                                            P(F) x P(B | F) 

P(F | B)  =   

 

In the denominator, we need a sum, with each term in the sum having exactly the same form as 

our numerator: a prior probability for a hypothesis multiplied by the reverse conditional 

probability. The sum has to have one such term for each of our possible hypotheses. In our 

scenario, there are only two: that the fruit came from Fairsley, or that it came from Gibbons’. Let’s 

call the second hypothesis ‘G’. Our calculation looks like this: 

 

                                                            P(F) x P(B | F) 

P(F | B)  =   

                      P(F) x P(F | B) + P(G) x P(F | G) 

 

Now we just have to find concrete numbers for these various probabilities in our little story. First, 

P(F) is the prior probability for the peach coming from Fairsley—that is, the probability that you 

would’ve assigned to it coming from Fairsley prior to discovering the evidence that it was bad—

before you took a bite. Well, we know mom’s shopping habits: 80% of the time she goes to 

Gibbons’; 20% of the time she goes to Fairsley. So a random piece of food—our peach, for 

example—has a 20% probability of coming from Fairsley. P(F) = .2. And for that matter, the peach 

has an 80% probability of coming from Gibbons’, so the prior probability for that hypothesis—

P(G)—is .8. What about P(B | F)? That’s the conditional probability that a peach will be bad 

assuming it came from Fairsley. We know that! You did a systematic study and concluded that 

40% of Fairsley’s peaches are bad; P(B | F) = .4. Moreover, your study showed that 20% of peaches 

from Gibbons’ were bad, so P(G | F) = .2. We can now plug in the numbers and do the calculation: 

 

                                                          .2 x .4                            .08             1 

P(F | B)  =    =    =   

                        (.2 x .4) + (.8 x .2)              .08 + .16        3 

 

As a matter of fact, the probability that the bad peach you tasted came from Fairsley—the 

conclusion to which you jumped as soon as you took a bite—is only 1/3. It’s twice as likely that 

the peach came from Gibbons’. Your belief is not rational. Despite the fact that Fairsley peaches 

are bad at twice the rate of Gibbons’, it’s far more likely that your peach came from Gibbons’, 

mainly because your mom does so much more of her shopping there. 
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So here we have an instance of Bayes’ Law performing the function of a logic—providing a 

method for distinguishing good from bad reasoning. Our little story, it turns out, depicted an 

instance of the latter, and Bayes’ Law showed that the reasoning was bad by providing a standard 

against which to measure it. Bayes’ Law, on this interpretation, is a model of perfectly rational 

belief-revision. Of course many real-life examples of that kind of reasoning can’t be subjected to 

the kind of rigorous analysis that the (made up) numbers in our scenario allowed. When we’re 

actually adjusting our beliefs in light of evidence, we often lack precise numbers; we don’t walk 

around with a calculator and an index card with Bayes’ Law on it, crunching the numbers every 

time we learn new things. Nevertheless, our actual practices ought to be informed by Bayesian 

principles; they ought to approximate the kind of rigorous process exemplified by the formula. We 

should keep in mind the need to be open to adjusting our prior convictions, the fact that alternative 

possibilities exist and ought to be taken into consideration, the significance of probability and 

uncertainty to our deliberations about what to believe and how strongly to believe it. Again, Hume: 

the wise person proportions belief according to the evidence. 

 

 

EXERCISES 

 

1. Women are twice as likely to suffer from anxiety disorders as men: 8% to 4%. They’re also 

more likely to attend college: these days, it’s about a 60/40 ratio of women to men. (Are these two 

phenomena related? That’s a question for another time.) If a random person is selected from my 

logic class, and that person suffers from an anxiety disorder, what’s the probability that it’s a 

woman? 

 

2. Suppose I’m a volunteer worker at my local polling place. It’s pretty conservative where I live: 

75% of voters are Republicans; only 25% are Democrats (third-party voters are so rare they can 

be ignored). And they’re pretty loyal: voters who normally favor Republicans only cross the aisle 

and vote Democrat 10% of the time; normally Democratic voters only switch sides 20% of the 

time. On Election Day 2016 (it’s Democrat Hillary Clinton vs. Republican Donald Trump for 

president), my curiosity gets the best of me, and I’ve gotta peek—so I reach into the pile of ballots 

(pretend it’s not an electronic scanning machine counting the ballots, but an old-fashioned box 

with paper ballots in it) and pick one at random. It’s a vote for Hillary. What’s the probability that 

it was cast by a (normally) Republican voter? 

 

3. Among Wisconsin residents, 80% are Green Bay Packers fans, 10% are Chicago Bears fans, 

and 10% favor some other football team (we’re assuming every Wisconsinite has a favorite team). 

Packer fans aren’t afraid to show their spirit: 75% of them wear clothes featuring the team logo. 

Bears fans a quite reluctant to reveal their loyalties in such hostile territory, so only 25% of them 

are obnoxious enough to wear Bears clothes. Fans of other teams aren’t quite as scared: 50% of 

them wear their teams’ gear. I’ve got a neighbor who does not wear clothes with his favorite team’s 

logo. Suspicious (FIB?). What’s the probability he’s a Bears fan? 

 

4. In my logic class, 20% of students are deadbeats: on exams, they just guess randomly. 60% of 

the students are pretty good, but unspectacular: they get correct answers 80% of the time. The 

remaining 20% of the students are geniuses: they get correct answers 100% of the time. I give a 
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true/false exam. Afterwards, I pick one of the completed exams at random; the student got the first 

two questions correct. What’s the probability that it’s one of the deadbeats? 

 

 

IV.  Basic Statistical Concepts and Techniques 

 

In this section and the next, the goal is equip ourselves to understand, analyze, and criticize 

arguments using statistics. Such arguments are extremely common; they’re also frequently 

manipulative and/or fallacious. As Mark Twain once said, “There are three kinds of lies: lies, 

damned lies, and statistics.” It is possible, however, with a minimal understanding of some basic 

statistical concepts and techniques, along with an awareness of the various ways these are 

commonly misused (intentionally or not), to see the “lies” for what they are: bad arguments that 

shouldn’t persuade us. In this section, we will provide a foundation of basic statistical knowledge. 

In the next, we will look at various statistical fallacies. 

 

Averages: Mean vs. Median 

 

The word ‘average’ is slippery: it can be used to refer both to the arithmetic mean or the median 

of a set of values. The mean and median are often different, and when this is the case, use of the 

word ‘average’ is equivocal. A clever person can use this fact to her rhetorical advantage. We hear 

the word ‘average’ thrown around quite a bit in arguments: the average family has such-and-such 

an income, the average student carries such-and-such in student loan debt, and so on. Audiences 

are supposed to take this fictional average entity to be representative of all the others, and 

depending on the conclusion she’s trying to convince people of, the person making the argument 

will choose between mean and median, picking the number that best serves her rhetorical purpose. 

It’s important, therefore, for the critical listener to ask, every time the word ‘average’ is used, 

“Does this refer to the mean or the median? What’s the difference between the two? How would 

using the other affect the argument?” 

 

A simple example can make this clear.27 I run a masonry contracting business on the side—Logical 

Constructions (a wholly owned subsidiary of LogiCorp). Including myself, 22 people work at 

Logical Constructions. This is how much they’re paid per year: $350,000 for me (I’m the boss); 

$75,000 each for two foremen; $70,000 for my accountant; $50,000 each for five stone masons; 

$30,000 for the office secretary; $25,000 each for two apprentices; and $20,000 each for ten 

laborers. To calculate the mean salary at Logical Constructions, we add up all the individual 

salaries (my $350,000, $75,000 twice since there are two foremen, and so on) and divide by the 

number of employees. The result is $50,000. To calculate the median salary, we put all the 

individual salaries in numerical order (ten entries of $20,000 for the laborers, then two entries of 

$25,000 for the apprentices, and so on) and find the middle number—or, as is the case with our 

set, which has an even number of entries, the mean of the middle two numbers. The middle two 

numbers are both $25,000, so the median salary is $25,000.  

 

                                                 
27 Inspiration for this example, as with much that follows, comes from Darrell Huff, 1954, How to Lie with Statistics, 

New York: Norton. 
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Now, you may have noticed, a lot of my workers don’t get paid particularly well. In particular, 

those at the bottom—my ten laborers—are really getting the shaft: $20,000 a year for that kind of 

back-breaking work is a raw deal. Suppose one day, as I’m driving past our construction site (in 

the back of my limo, naturally), I notice some outside agitators commiserating with my laborers 

during their (10-minute) lunch break—you know the type, union organizers, pinko commies (in 

this story, I’m a greedy capitalist; play along). They’re trying to convince my employees to bargain 

collectively for higher wages. Now we have a debate: should the workers at Logical Constructions 

be paid more? I take one side of the issue; the workers and organizers take the other. In the course 

of making our arguments, we might both refer to the average worker at Logical Constructions. I’ll 

want to do so in a way that makes it appear that this mythical worker is doing pretty well, and so 

we don’t need to change anything; the organizers will want to do so in such a way that makes it 

appear that the average worker isn’t do very well at all. We have two senses of ‘average’ to choose 

from: mean and median. In this case, the mean is higher, so I will use it: “The average worker at 

Logical Constructions makes $50,000 per year. That’s a pretty good wage!” My opponents, the 

union organizers, will counter, using the median: “The average worker at Logical Constructions 

makes a mere $25,000 per year. Try raising a family on such a pittance!”  

 

A lot hangs on which sense of ‘average’ we pick. This is true in lots of real-life circumstances. For 

example, household income in the United States is distributed much as salaries are at my fictional 

Logical Constructions company: those at the top of the range fare much better than those at the 

bottom.28 In such circumstances, the mean is higher than the median. In 2014, the mean household 

income in the U.S. was $72, 641. That’s pretty good! The median, however, was a mere $53, 657. 

That’s a big difference! “The average family makes about $72,000 per year” sounds a lot better 

than “The average family makes about $53,000 per year.”  

 

Normal Distributions: Standard Deviation, Confidence Intervals 

 

If you gave IQ tests to a whole bunch of people, and then graphed the results on a histogram or bar 

chart—so that every time you saw a particular score, the bar for that score would get higher—

you’d end up with a picture like this: 

 

                                                 
28 In 2014, the richest fifth of American households accounted for over 51% of income; the poorest fifth, 3%. 
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This kind of distribution is called a “normal” or “Gaussian” distribution29; because of its shape, 

it’s often called a “bell curve”. Besides IQ, many phenomena in nature are (approximately) 

distributed normally: height, blood pressure, motions of individual molecules in a collection, 

lifespans of industrial products, measurement errors, and so on.30 And even when traits are not 

normally distributed, it can be useful to treat them as if they were. This is because the bell curve 

provides an extremely convenient starting point for making certain inferences. It’s convenient 

because one can know everything about such a curve by specifying two of its features: its mean 

(which, because the curve is symmetrical, is the same as its median) and its standard deviation.  

 

We already understand the mean. Let’s get a grip on standard deviation. We don’t need to learn 

how to calculate it (though that can be done); we just want a qualitative (as opposed to quantitative) 

understanding of what it signifies. Roughly, it’s a measure of the spread of the data represented 

on the curve; it’s a way of indicating how far, on average, values tend to stray from the mean. An 

example can make this clear. Consider two cities: Milwaukee, WI and San Diego, CA. These two 

cities are different in a variety of ways, not least in the kind of weather their residents experience. 

Setting aside precipitation, let’s focus just on temperature. If you recorded the high temperatures 

every day in each town over a long period of time and made a histogram for each (with 

temperatures on the x-axis, number of days on the y-axis), you’d get two very different-looking 

curves. Maybe something like these: 

 

                                                 
29 “Gaussian” because the great German mathematician Carl Friedrich Gauss made a study of such distributions in the 

early 19th century (in connection with their relationship to errors in measurement). 
30 This is a consequence of a mathematical result, the Central Limit Theorem, the basic upshot of which is that if some 

random variable (a trait like IQ, for example, to be concrete) is the sum of many independent random variables (causes 

of IQ differences: lots of different genetic factors, lots of different environmental factors), then the variable (IQ) will 

be normally distributed. The mathematical theorem deals with abstract numbers, and the distribution is only perfectly 

“normal” when the number of independent variables approaches infinity. That’s why real-life distributions are only 

approximately normal. 



 Probability and Statistics 205 

 

                    
                               Milwaukee                                                           San Diego 
 
The average high temperatures for the two cities—the peaks of the curves—would of course be 

different: San Diego is warmer on average than Milwaukee. But the range of temperatures 

experienced in Milwaukee is much greater than that in San Diego: some days in Milwaukee, the 

high temperature is below zero, while on some days in the summer it’s over 100°F. San Diego, on 

the other hand, is basically always perfect: right around 70° or so.31 The standard deviation of 

temperatures in Milwaukee is much greater than in San Diego. This is reflected in the shapes of 

the respective bell curves: Milwaukee’s is shorter and wider—with a non-trivial number of days 

at the temperature extremes and a wide spread for all the other days—and San Diego’s is taller and 

narrower—with temperatures hovering in a tight range all year, and hence more days at each 

temperature recorded (which explains the relative heights of the curves). 

 

Once we know the mean and standard deviation of a normal distribution, we know everything we 

need to know about it. There are three very useful facts about these curves that can be stated in 

terms of the mean and standard deviation (SD). As a matter of mathematical fact, 68.3% of the 

population depicted on the curve (whether they’re people with certain IQs, days on which certain 

temperatures were reached, measurements with a certain amount of error) falls within a range of 

one standard deviation on either side of the mean. So, for example, the mean IQ is 100; the standard 

deviation is 15. It follows that 68.3% of people have an IQ between 85 and 115—15 points (one 

SD) on either side of 100 (the mean). Another fact: 95.4% of the population depicted on a bell 

curve will fall within a range two standard deviations from the mean. So 95.4% of people have an 

IQ between 70 and 130—30 points (2 SDs) on either side of 100. Finally, 99.7% of the population 

falls within three standard deviations of the mean; 99.7% of people have IQs between 55 and 145. 

These ranges are called confidence intervals.32 They are convenient reference points commonly 

used in statistical inference.33 

                                                 
31 This is an exaggeration, of course, but not much of one. The average high in San Diego in January is 65°; in July, 

it’s 75°. Meanwhile, in Milwaukee, the average high in January is 29°, while in July it’s 80°. 
32 Pick a person at random. How confident are you that they have an IQ between 70 and 130? 95.4%, that’s how 

confident. 
33 As a matter of fact, in current practice, other confidence intervals are more often used: 90%, (exactly) 95%, 99%, 

etc. These ranges lie on either side of the mean within non-whole-number multiples of the standard deviation. For 

example, the exactly-95% interval is 1.96 SDs to either side of the mean. The convenience of calculators and 
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Statistical Inference: Hypothesis Testing 

 

If we start with knowledge of the properties of a given normal distribution, we can test claims 

about the world to which that information is relevant. Starting with a bell curve—information of a 

general nature—we can make draw conclusions about particular hypotheses. These are 

conclusions of inductive arguments; they are not certain, but more or less probable. When we use 

knowledge of normal distributions to draw them, we can be precise about how probable they are. 

This is inductive logic. 

 

The basic pattern of the kinds of inferences we’re talking about is this: one formulates a hypothesis, 

then runs an experiment to test it; the test involves comparing the results of that experiment to 

what is known (some normal distribution); depending on how well the results of the experiment 

comport with what would be expected given the background knowledge represented by the bell 

curve, we draw a conclusion about whether or not the hypothesis is true. 

 

Though they are applicable in a very wide range of contexts, it’s perhaps easiest to explain the 

patterns of reasoning we’re going to examine using examples from medicine. These kinds of cases 

are vivid; they aid in understanding by making the consequences of potential errors more real. 

Also, in these cases the hypotheses being tested are relatively simple: claims about individuals’ 

health—whether they’re healthy or sick, whether they have some condition or don’t—as opposed 

to hypotheses dealing with larger populations and measurements of their properties. Examining 

these simpler cases will allow us to see more clearly the underlying patterns of reasoning that cover 

all such instances of hypothesis testing, and to gain familiarity with the vocabulary statisticians 

use in their work. 

 

The knowledge we start with is how some trait relevant to the particular condition is distributed in 

the population generally—a bell curve.34 The experiment we run is to measure the relevant trait in 

the individual whose health we’re assessing. The result of a comparison with the result of this 

measurement and the known distribution of the trait tells us something about whether or not the 

person is healthy. Suppose we start with information about how a trait is distributed among people 

who are healthy. Hematocrit, for example, is a measure of how much of a person’s blood is taken 

up by red blood cells—expressed as a percentage (of total blood volume). Lower hematocrit levels 

are associated with anemia; higher levels are associated with dehydration, certain kinds of tumors, 

and other disorders. Among healthy men, the mean hematocrit level is 47%, with a standard 

deviation of 3.5%. We can draw the curve, noting the boundaries of the confidence intervals: 

 
 
 
 
 
 
 
                                                 
spreadsheets to do our math for us makes these confidence intervals more practical. But we’ll stick with the 

68.3/95.4/99.7 intervals for simplicity’s sake. 
34 Again, the actual distribution may not be normal, but we will assume that it is in our examples. The basic patterns 

of reasoning are similar when dealing with different kinds of distributions. 
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Hematocrit Levels, Healthy Men 

 
                                       36.5         40           43.5         47          50.5          54           57.5 

 

Because of the fixed mathematical properties of the bell curve, we know that 68.3% of healthy 

men have hematocrit levels between 43.5% and 50.5%; 95.4% of them are between 40% and 54%; 

and 99.7% of them are between 36.5% and 57.5%. Let’s consider a man whose health we’re 

interested in evaluating. Call him Larry. We take a sample of Larry’s blood and measure the 

hematocrit level. We compare it to the values on the curve to see if there might be some reason to 

be concerned about Larry’s health. Remember, the curve tells us the levels of hematocrit for 

healthy men; we want to know if Larry’s one of them. The hypothesis we’re testing is that Larry’s 

healthy. Statisticians often refer the hypothesis under examination in such tests as the “null 

hypothesis”—a default assumption, something we’re inclined to believe unless we discover 

evidence against it. Anyway, we’re measuring Larry’s hematocrit; what kind of result should he 

be hoping for? Clearly, he’d like to be as close to the middle, fat part of the curve as possible; 

that’s where most of the healthy people are. The further away from the average healthy person’s 

level of hematocrit he strays, the more he’s worried about his health. That’s how these tests work: 

if the result of the experiment (measuring Larry’s hematocrit) is sufficiently close to the mean, we 

have no reason to reject the null hypothesis (that Larry’s healthy); if the result is far away, we do 

have reason to reject it. 

 

How far away from the mean is too far away? It depends. A typical cutoff is two standard 

deviations from the mean—the 95.4% confidence interval.35 That is, if Larry’s hematocrit level is 

below 40% or above 54%, then we might say we have reason to doubt the null hypothesis that 

Larry is healthy. The language statisticians use for such a result—say, for example, if Larry’s 

hematocrit came in at 38%—is to say that it’s “statistically significant”. In addition, they specify 

the level at which it’s significant—an indication of the confidence-interval cutoff that was used. 

In this case, we’d say Larry’s result of 38% is statistically significant at the .05 level. (95% = .95; 

1 - .95 = .05) Either Larry is unhealthy (anemia, most likely), or he’s among the (approximately) 

                                                 
35 Actually, the typical level is now exactly 95%, or 1.96 standard deviations from the mean. From now on, we’re just 

going to pretend that the 95.4% and 95% levels are the same thing. 
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5% of healthy people who fall outside of the two standard-deviation range. If he came in at a level 

even further from the mean—say, 36%—we would say that this result is significant at the .003 

level (99.7% = .997; 1 - .997 = .003). That would give us all the more reason to doubt that Larry 

is healthy. 

 

So, when we’re designing a medical test like this, the crucial decision to make is where to set the 

cutoff. Again, typically that’s the 95% confidence interval. If a result falls outside that range, the 

person tests “positive” for whatever condition we’re on the lookout for. (Of course, a “positive” 

result is hardly positive news—in the sense of being something you want to hear.) But these sorts 

of results are not conclusive: it may be that the null hypothesis (this person is healthy) is true, and 

that they’re simply one of the relative rare 5% who fall on the outskirts of the curve. In such a case, 

we would say that the test has given the person a “false positive” result: the test indicates sickness 

when in fact there is none. Statisticians refer to this kind of mistake as “type I error”. We could 

reduce the number of mistaken results our test gives by changing the confidence levels at which 

we give a positive result. Returning to the concrete example above: suppose Larry has a hematocrit 

level of 38%, but that he is not in fact anemic; since 38% is outside of the two standard-deviation 

range, our test would give Larry a false positive result if we used the 95% confidence level. 

However, if we raised the threshold of statistical significance to the three standard-deviation level 

of 99.7%, Larry would not get flagged for anemia; there would be no false positive, no type I error.  

 

So we should always use the wider range on these kinds of tests to avoid false positives, right? Not 

so fast. There’s another kind of mistake we can make: false negatives, or type II errors. Increasing 

our range increases our risk of this second kind of foul-up. Down there at the skinny end of the 

curve there are relatively few healthy people. Sick people are the ones who generally have 

measurements in that range; they’re the ones we’re trying to catch. When we issue a false negative, 

we’re missing them. A false negative occurs when the test tells you there’s no reason to doubt the 

null hypothesis (that you’re healthy), when as a matter of fact you are sick. If we increase our 

range from two to three standard deviations—from the 95% level to the 99.7% level—we will 

avoid giving a false positive result to Larry, who is healthy despite his low 38% hematocrit level. 

But we will end up giving false reassurance to some anemic people who have levels similar to 

Larry’s; someone who has a level of 38% and is sick will get a false negative result if we only flag 

those outside the 99.7% confidence interval (36.5% - 57.5%). 

 

This is a perennial dilemma in medical screening: how best to strike a balance between the two 

types of errors—between needlessly alarming healthy people with false positive results and failing 

to detect sickness in people with false negative results. The terms clinicians use to characterize 

how well diagnostic tests perform along these two dimensions are sensitivity and specificity. A 

highly sensitive test will catch a large number of cases of sickness—it has a high rate of true 

positive results; of course, this comes at the cost of increasing the number of false positive results 

as well. A test with a high level of specificity will have a high rate of true negative results—

correctly identifying healthy people as such; the cost of increased specificity, though, is an increase 

in the number of false negative results—sick people that the test misses. Since every false positive 

is a missed opportunity for a true negative, increasing sensitivity comes at the cost of decreasing 

specificity. And since every false negative is a missed true positive, increasing specificity comes 

at the cost of decreasing specificity. A final bit of medical jargon: a screening test is accurate to 

the degree that it is both sensitive and specific.  
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Given sufficiently thorough information about the distributions of traits among healthy and sick 

populations, clinicians can rig their diagnostic tests to be as sensitive or specific as they like. But 

since those two properties pull in opposite directions, there are limits to degree of accuracy that is 

possible. And depending on the particular case, it may be desirable to sacrifice specificity for more 

sensitivity, or vice versa. 

 

To see how a screening test might be rigged to maximize sensitivity, let’s consider an abstract 

hypothetical example. Suppose we knew the distribution of a certain trait among the population of 

people suffering from a certain disease. (Contrast this with our starting point above: knowledge of 

the distribution among healthy individuals.) This kind of knowledge is common in medical 

contexts: various so-called biomarkers—gene mutations, proteins in the blood, etc.—are known 

to be indicative of certain conditions; often, one can know how such markers are distributed among 

people with the condition. Again, keeping it abstract and hypothetical, suppose we know that 

among people who suffer from Disease X, the mean level of a certain biomarker β for the disease 

is 20, with a standard deviation of 3. We can sum up this knowledge with a curve: 

 
β Levels, People with Disease X 

 
                                        11            14           17           20            23            26           29 

 

Now, suppose Disease X is very serious indeed. It would be a benefit to public health if we were 

able to devise a screening test that could catch as many cases as possible—a test with a high 

sensitivity. Given the knowledge we have about the distribution of β among patients with the 

disease, we can make our test as sensitive as we like. We know, as a matter of mathematical fact, 

that 68.3% percent of people with the disease have β-levels between 17 and 23; 95.4% of people 

with the disease have levels between 14 and 26; 99.7% have levels between 11 and 29. Given these 

facts, we can devise a test that will catch 99.7% of cases of Disease X like so: measure the level 

of biomarker β in people, and if they have a value between 11 and 29, they get a positive test result; 

a positive result is indicative of disease. This will catch 99.7% of cases of the condition, because 

the range chosen is three standard deviations on either side of the mean, and that range contains 

99.7% of unhealthy people; if we flag everybody in that range, we will catch 99.7% of cases. Of 
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course, we’ll probably end up catching a whole lot of healthy people as well if we cast our net this 

wide; we’ll get a lot of false positives. We could correct for this by making our test less sensitive, 

say by lowering the threshold for a positive test to the two standard-deviation range of 14 – 26. 

We would now only catch 95.4% of cases of sickness, but we would reduce the number of healthy 

people given false positives; instead, they would get true negative results, increasing the specificity 

of our test. 

 

Notice that the way we used the bell curve in our hypothetical test for Disease X was different 

from the way we used the bell curve in our test of hematocrit levels above. In that case, we flagged 

people as potentially sick when they fell outside of a range around the mean; in the new case, we 

flagged people as potentially sick when they fell inside a certain range. This difference corresponds 

to the differences in the two populations the respective distributions represent: in the case of 

hematocrit, we started with a curve depicting the distribution of a trait among healthy people; in 

the second case, we started with a curve telling us about sick people. In the former case, sick people 

will tend to be far from the mean; in the latter, they’ll tend to cluster closer. 

 

The tension we’ve noted between sensitivity and specificity—between increasing the number of 

cases our diagnostic test catches and reducing the number of false positives it produces, can be 

seen when show curves for healthy populations and sick populations in the same graph. There is a 

biomarker called alpha-fetoprotein in the blood serum of pregnant women. Low levels of this 

protein are associated with Down syndrome in the fetus; high levels are associated with neural 

tube defects like open spina bifida (spine isn’t completely inside the body) and anencephaly 

(hardly any of the brain/skull develops). These are serious conditions—especially those associated 

with the high levels: if the baby has open spina bifida, you need to be ready for that (with specialists 

and special equipment) at the time of birth; in cases of anencephaly, the fetus will not be viable (at 

worst) or will live without sensation or awareness (at best?). Early in pregnancy, these conditions 

are screened for. Since they’re so serious, you’d like to catch as many cases as possible. And yet, 

you’d like to avoid alarming false positive results for these conditions. The following chart, with 

bell curves for healthy babies, those with open spina bifida, and anencephaly, illustrates the 

difficult tradeoffs in making these sorts of decisions36: 

 

 
                                                 
36 Picture from a post at www.pregnancylab.net by David Grenache, PhD: 

http://www.pregnancylab.net/2012/11/screening-for-neural-tube-defects.html 

 

http://www.pregnancylab.net/
http://www.pregnancylab.net/2012/11/screening-for-neural-tube-defects.html
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The vertical line at 2.5 MoM (multiples of the median) is the typical cutoff for a “positive” result 

(flagged for potential problems). On the one hand, there are substantial portions of the two curves 

representing the unhealthy populations—to the left of that line—that won’t be flagged by the test. 

Those are cases of sickness that we won’t catch—false negatives. On the other hand, there are a 

whole lot of healthy babies whose parents are going to be unnecessarily alarmed. The area of the 

“Unaffected” curve to the right of the line may not look like much, but these curves aren’t drawn 

on a linear scale. If they were, that curve would be much (much!) higher than the two for open 

spina bifida and anencephaly: those conditions are really rare; there are far more healthy babies. 

The upshot is, that tiny-looking portion of the healthy curve represents a lot of false positives.  

 

Again, this kind of tradeoff between sensitivity and specificity often presents clinicians with 

difficult choices in designing diagnostic tests. They must weigh the benefits of catching as many 

cases as possible against the potential costs of too many false positives. Among the costs are the 

psychological impacts of getting a false positive. As a parent who experienced it, I can tell you 

getting news of potential open spina bifida or anencephaly is quite traumatic.37 But it could be 

worse. For example, when a biomarker for AIDS was first identified in the mid-1980s, people at 

the Centers for Disease Control considered screening for the disease among the entire population. 

The test was sensitive, so they knew they would catch a lot of cases. But they also knew that there 

would be a good number of false positives. Considering the hysteria that would likely arise from 

so many diagnoses of the dreaded illness (in those days, people knew hardly anything about AIDS; 

people were dying of a mysterious illness, and fear and misinformation were widespread), they 

decided against universal screening. Sometimes the negative consequences of false positives 

include financial and medical costs. In 2015, the American Cancer Society changed its 

recommendations for breast-cancer screening: instead of starting yearly mammograms at age 40, 

women should wait until age 45.38 This was a controversial decision. Afterwards, many women 

came forward to testify that their lives were saved by early detection of breast cancer, and that 

under the new guidelines they may not have fared so well. But against the benefit of catching those 

cases, the ACS had to weigh the costs of false-positive mammograms. The follow-up to a positive 

mammogram is often a biopsy; that’s an invasive surgical procedure, and costly. Contrast that with 

the follow-up to a positive result for open spina bifida/anencephaly: a non-invasive, cheap 

ultrasound. And unlike an ultrasound, the biopsy is sometimes quite difficult to interpret; you get 

some diagnoses of cancer when cancer is not present. Those women may go on to receive 

treatment—chemotherapy, radiation—for cancer that they don’t have. The costs and physical side-

effects of that are severe.39 In one study, it was determined that for every life saved by 

mammography screening, there were 100 women who got false positives (and learned about it 

after a biopsy) and five women treated for cancer they didn’t have.40  

 

The logic of statistical hypothesis testing is relatively clear. What’s not clear is how we ought to 

apply those relatively straightforward techniques in actual practice. That often involves difficult 

financial, medical, and moral decisions. 

 

                                                 
37 False positive: the baby was perfectly healthy. 
38 Except for those known to be at risk, who should start earlier. 
39 Especially perverse are the cases in which the radiation treatment itself causes cancer in a patient who didn’t have 

to be treated to begin with. 
40 PC Gøtzsche and KJ Jørgensen, 2013, Cochrane Database of Systematic Reviews (6), CD001877.pub5 
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Statistical Inference: Sampling 

 

When we were testing hypotheses, our starting point was knowledge about how traits were 

distributed among a large population—e.g., hematocrit levels among healthy men. We now ask a 

pressing question: how do we acquire such knowledge? How do we figure out how things stand 

with a very large population? The difficulty is that it’s usually impossible to check every member 

of the population. Instead, we have to make an inference. This inference involves sampling: instead 

of testing every member of the population, we test a small portion of the population—a sample—

and infer from its properties to the properties of the whole. It’s a simple inductive argument: 

 

The sample has property X. 

/ The general population has property X. 

 

The argument is inductive: the premise does not guarantee the truth of the conclusion; it merely 

makes it more probable. As was the case in hypothesis testing, we can be precise about the 

probabilities involved, and our probabilities come from the good-old bell curve. 

 

Let’s take a simple example.41 Suppose we were trying to discover the percentage of men in the 

general population; we survey 100 people, and it turns out there are 55 men in our sample. So, the 

proportion of men in our sample is .55. We’re trying to make an inference from this premise to a 

conclusion about the proportion of men in the general population. What’s the probability that the 

proportion of men in the general population is .55? This isn’t exactly the question we want to 

answer in these sorts of cases, though. Rather, we ask, what’s the probability that the true 

proportion of men in the general population is in some range on either side of .55? We can give a 

precise answer to this question; the answer depends on the size of the range you’re considering in 

a familiar way. 

 

Given that our sample’s proportion of men is .55, it is relatively more likely that the true proportion 

in the general population is close to that number, less likely that it’s far away. For example, it’s 

more likely, given the result of our survey, that in fact 50% of the population is men than it is that 

only 45% are men. And it’s still less likely that only 40% are men. The same pattern holds in the 

opposite direction: it’s more likely that the true percentage of men is 60% than 65%. Generally 

speaking, the further away from our survey results we go, the less probable it is that we have the 

true value for the general population. The drop off in probabilities described takes the form of a 

bell curve: 

 

 

 

 

 

 

 

 

 

                                                 
41 I am indebted for this example in particular (and for much background on the presentation of statistical reasoning 

in general) to John Norton, 1998, How Science Works, New York: McGraw-Hill, pp. 12.14 – 12.15. 
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Proportion of Men in the Population 

 
                                                             .40           .45           .50         .55        .60           .65          .70 

 

The standard deviation of .05 is a function of our sample size of 100.42 We can use the usual 

confidence intervals—again, with 2 standard deviations, 95.4% being standard practice—to 

interpret the findings of our survey: we’re pretty sure—to the tune of 95%—that the general 

population is between 45% and 65% male.  

 

That’s a pretty wide range. Our result is not that impressive (especially considering the fact that 

we know the actual number is very close to 50%). But that’s the best we can do given the 

limitations of our survey. The main limitation, of course, was the size of our sample: 100 people 

just isn’t very many. We could narrow the range within which we’re 95% confident if we increased 

our sample size; doing so would likely (though not certainly) give us a proportion in our sample 

closer to the true value of (approximately) .5. The relationship between the sample size and the 

width of the confidence intervals is a purely mathematical one. As sample size goes up, standard 

deviation goes down—the curve narrows: 

 

 
 

                                                 
42 And the mean (our result of .55). The mathematical details of the calculation needn’t detain us.  
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The pattern of reasoning on display in our toy example is the same as that used in sampling 

generally. Perhaps the most familiar instances of sampling in everyday life are public opinion 

surveys. Rather than trying to determine the proportion of people in the general population who 

are men (not a real mystery), opinion pollsters try to determine the proportion of a given population 

who, say, intend to vote for a certain candidate, or approve of the job the president is doing, or 

believe in Bigfoot. Pollsters survey a sample of people on the question at hand, and end up with a 

result: 29% of Americans believe in Bigfoot, for example.43 But the headline number, as we have 

seen, doesn’t tell the whole story. 29% of the sample (in this case, about 1,000 Americans) reported 

believing in Bigfoot; it doesn’t follow with certainty that 29% of the general population (all 

Americans) have that belief. Rather, the pollsters have some degree of confidence (again, 95% is 

standard) that the actual percentage of Americans who believe in Bigfoot is in some range around 

29%. You may have heard the “margin of error” mentioned in connection with such surveys. This 

phrase refers to the very range we’re talking about. In the survey about Bigfoot, the margin of error 

is 3%.44 That’s the distance from the mean (the 29% found in the sample) and the ends of the two 

standard-deviation confidence interval—the range in which we’re 95% sure the true value lies. 

Again, this range is just a mathematical function of the sample size: if the sample size is around 

100, the margin of error is about 10% (see the toy example above: 2 SDs = .10); if the sample size 

is around 400, you get that down to 5%; at 600, you’re down to 4%; at around 1,000, 3%; to get 

down to 2%, you need around 2,500 in the sample, and to get down to 1%, you need 10,000.45 So 

the real upshot of the Bigfoot survey result is something like this: somewhere between 26% and 

32% of Americans believe in Bigfoot, and we’re 95% sure that’s the correct range; or, to put it 

another way, we used a method for determining the true proportion of Americans who believe in 

Bigfoot that can be expected to determine a range in which the true value actually falls 95% of the 

time, and the range that resulted from our application of the method on this occasion was 26% - 

32%.  

 

That last sentence, we must admit, would make for a pretty lousy newspaper headline (“29% of 

Americans believe in Bigfoot!” is much sexier), but it’s the most honest presentation of what the 

results of this kind of sampling exercise actually show. Sampling gives us a range, which will be 

wider or narrower depending on the size of the sample, and not even a guarantee that the actual 

value is within that range. That’s the best we can do; these are inductive, not deductive, arguments. 

 

Finally, on the topic of sampling, we should acknowledge than in actual practice, polling is hard. 

The mathematical relationships between sample size and margin of error/confidence that we’ve 

noted all hold in the abstract, but real-life polls can have errors that go beyond these theoretical 

limitations on their accuracy. As the 2016 U.S. presidential election—and the so-called “Brexit” 

vote in the United Kingdom that same year, and many, many other examples throughout the history 

of public opinion polling—showed us, polls can be systematically in error. The kinds of facts 

                                                 
43 Here’s an actual survey with that result: 

 http://angusreidglobal.com/wp-content/uploads/2012/03/2012.03.04_Myths.pdf 
44 Actually, it’s 3.1%, but never mind. 
45 Interesting mathematical fact: these relationships hold no matter how big the general population from which you’re 

sampling (as long as it’s above a certain threshold). It could be the size of the population of Wisconsin or the population 

of China: if your sample is 600 Wisconsinites, your margin of error is 4%; if it’s 600 Chinese people, it’s still 4%. 

This is counterintuitive, but true—at least, in the abstract. We’re omitting the very serious difficulty that arises in 

actual polling (which we will discuss anon): finding the right 600 Wisconsinites or Chinese people to make your 

survey reliable; China will present more difficulty than Wisconsin. 

http://angusreidglobal.com/wp-content/uploads/2012/03/2012.03.04_Myths.pdf
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we’ve been stating—that with a sample size of 600, a poll has a margin of error of 4% at the 95% 

confidence level—hold only on the assumption that there’s a systematic relationship between the 

sample and the general population it’s meant to represent; namely, that the sample is 

representative. A representative sample mirrors the general population; in the case of people, this 

means that the sample and the general population have the same demographic make-up—same 

percentage of old people and young people, white people and people of color, rich people and poor 

people, etc., etc. Polls whose samples are not representative are likely to misrepresent the feature 

of the population they’re trying to capture. Suppose I wanted to find out what percentage of the 

U.S. population thinks favorably of Donald Trump. If I asked 1,000 people in, say, rural Oklahoma, 

I’d get one result; if I asked 1,000 people in midtown Manhattan, I’d get a much different result. 

Neither of those two samples is representative of the population of the United States as a whole. 

To get such a sample, I’d have to be much more careful about whom I surveyed. A famous example 

from the history of public polling illustrates the difficulties here rather starkly: in the 1936 U.S. 

presidential election, the contenders were Republican Alf Landon of Kansas, and the incumbent 

President Franklin D. Roosevelt. A (now-defunct) magazine, Literary Digest conducted a poll with 

2.4 million (!) participants, and predicted that Landon would win in a landslide. Instead, he lost in 

a landslide; FDR won the second of his four presidential elections. What went wrong? With a 

sample size so large, the margin of error would be tiny. The problem was that their sample was 

not representative of the American population. They chose participants randomly from three 

sources: (a) their list of subscribers; (b) car registration forms; and (c) telephone listings. The 

problem with this selection procedure is that all three groups tended to be wealthier than average. 

This was 1936, during the depths of the Great Depression. Most people didn’t have enough 

disposable income to subscribe to magazines, let alone have telephones or own cars. The survey 

therefore over-sampled Republican voters and got a skewed results. Even a large and seemingly 

random sample can lead one astray. This is what makes polling so difficult: finding representative 

samples is hard.46 

 

Other practical difficulties with polling are worth noting. First, the way your polling question is 

worded can make a big difference in the results you get. As we discussed in Chapter 2, the framing 

of an issue—the words used to specify a particular policy or position—can have a dramatic effect 

on how a relatively uninformed person will feel about it. If you wanted to know the American 

public’s opinion on whether or not it’s a good idea to tax the transfer of wealth to the heirs of 

people whose holdings are more than $5.5 million or so, you’d get one set of responses if you 

referred to the policy as an “estate tax”, a different set of responses if you referred to it as an 

“inheritance tax”, and a still different set if you called it the “death tax”. A poll of Tennessee 

residents found that 85% opposed “Obamacare”, while only 16% opposed “Insure Tennessee” 

(they’re the same thing, of course).47 Even slight changes in the wording of questions can alter the 

results of an opinion poll. This is why the polling firm Gallup hasn’t changed the wording of its 

                                                 
46 It’s even harder than this paragraph makes it out to be. It’s usually impossible for a sample—the people you’ve 

talked to on the phone about the president or whatever—to mirror the demographics of the population exactly. So 

pollsters have to weight the responses of certain members of their sample more than others to make up for these 

discrepancies. This is more art than science. Different pollsters, presented with the exact same data, will make different 

choices about how to weight things, and will end up reporting different results. See this fascinating piece for an 

example: http://www.nytimes.com/interactive/2016/09/20/upshot/the-error-the-polling-world-rarely-talks-

about.html?_r=0 
47 Source: http://www.nbcnews.com/politics/elections/rebuke-tennessee-governor-koch-group-shows-its-power-

n301031 

http://www.nytimes.com/interactive/2016/09/20/upshot/the-error-the-polling-world-rarely-talks-about.html?_r=0
http://www.nytimes.com/interactive/2016/09/20/upshot/the-error-the-polling-world-rarely-talks-about.html?_r=0
http://www.nbcnews.com/politics/elections/rebuke-tennessee-governor-koch-group-shows-its-power-n301031
http://www.nbcnews.com/politics/elections/rebuke-tennessee-governor-koch-group-shows-its-power-n301031
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presidential-approval question since the 1930s. They always ask: “Do you approve or disapprove 

of the way [name of president] is handling his job as President?” A deviation from this standard 

wording can produce different results. The polling firm Ipsos found that its polls were more 

favorable than others’ for the president. They traced the discrepancy to the different way they 

worded their question, giving an additional option: “Do you approve, disapprove, or have mixed 

feelings about the way Barack Obama is handling his job as president?”48 A conjecture: Obama’s 

approval rating would go down if pollsters included his middle name (Hussein) when asking the 

question. Small changes can make a big difference. 

 

Another difficulty with polling is that some questions are harder to get reliable data about than 

others, simply because they involve topics about which people tend to be untruthful. Asking 

someone whether he approves of the job the president is doing is one thing; asking him whether 

or not he’s ever cheated on his taxes, say, is quite another. He’s probably not shy about sharing his 

opinion on the former question; he’ll be much more reluctant to be truthful on the latter (assuming 

he’s ever fudged things on his tax returns). There are lots of things it would be difficult to discover 

for this reason: how often people floss, how much they drink, whether or not they exercise, their 

sexual habits, and so on. Sometimes this reluctance to share the truth about oneself is quite 

consequential: some experts think that the reason polls failed to predict the election of Donald 

Trump as president of the United States in 2016 was that some of his supporters were “shy”—

unwilling to admit that they supported the controversial candidate.49 They had no such qualms in 

the voting booth, however. 

 

Finally, who’s asking the question—and the context in which it’s asked—can make a big 

difference. People may be more willing to answer questions in the relative anonymity of an online 

poll, slightly less willing in the somewhat more personal context of a telephone call, and still less 

forthcoming in a face-to-face interview. Pollsters use all of these methods to gather data, and the 

results vary accordingly. Of course, these factors become especially relevant when the question 

being polled is a sensitive one, or something about which people tend not to be honest or 

forthcoming. To take an example: the best way to discover how often people truly floss is probably 

with an anonymous online poll. People would probably be more likely to lie about that over the 

phone, and still more likely to do so in a face-to-face conversation. The absolute worst source of 

data on that question, perversely, would probably be from the people who most frequently ask it: 

dentists and dental hygienists. Every time you go in for a cleaning, they ask you how often you 

brush and floss; and if you’re like most people, you lie, exaggerating the assiduity with which you 

attend to your dental-health maintenance (“I brush after every meal and floss twice a day, honest.”). 

 

As was the case with hypothesis testing, the logic of statistical sampling is relatively clear. Things 

get murky, again, when straightforward abstract methods confront the confounding factors 

involved in real-life application.  

 

 

 

                                                 
48 http://spotlight.ipsos-na.com/index.php/news/is-president-obama-up-or-down-the-effect-of-question-wording-on-

levels-of-presidential-support/ 
49 See here, for example: https://www.washingtonpost.com/news/monkey-cage/wp/2016/12/13/why-the-polls-

missed-in-2016-was-it-shy-trump-supporters-after-all/?utm_term=.f20212063a9c 

http://spotlight.ipsos-na.com/index.php/news/is-president-obama-up-or-down-the-effect-of-question-wording-on-levels-of-presidential-support/
http://spotlight.ipsos-na.com/index.php/news/is-president-obama-up-or-down-the-effect-of-question-wording-on-levels-of-presidential-support/
https://www.washingtonpost.com/news/monkey-cage/wp/2016/12/13/why-the-polls-missed-in-2016-was-it-shy-trump-supporters-after-all/?utm_term=.f20212063a9c
https://www.washingtonpost.com/news/monkey-cage/wp/2016/12/13/why-the-polls-missed-in-2016-was-it-shy-trump-supporters-after-all/?utm_term=.f20212063a9c
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EXERCISES 

 

1. I and a bunch of my friends are getting ready to play a rousing game of “army men”. Together, 

we have 110 of the little plastic toy soldiers—enough for quite a battle. However, some of us have 

more soldiers than others. Will, Brian and I each have 25; Roger and Joe have 11 each; Dan has 4; 

John and Herb each have 3; Mike, Jamie, and Dennis have only 1 each. 

 

(a) What is the mean number of army men held? What’s the median? 

 

(b) Jamie, for example, is perhaps understandably disgruntled about the distribution; I, on 

the other hand, am satisfied with the arrangement. In defending our positions, each of us 

might refer to the “average person” and the number of army men he has. Which sense of 

‘average’—mean or median—should Jamie use to gain a rhetorical advantage? Which 

should sense should I use? 

 

2. Consider cats and dogs—the domesticated kind, pets (tigers don’t count). Suppose I produced a 

histogram for a very large number of pet cats based on their weight, and did the same for pet dogs. 

Which distribution would have the larger standard deviation? 

 

3. Men’s heights are normally distributed, with a mean of about 70 inches and a standard deviation 

of about 3 inches. 68.3% of men fall within what range of heights? Where do 95.4% of them fall? 

99.7%? My father-in-law was 76 inches tall. What percentage of men were taller than he was? 

 

4. Women, on average, have lower hematocrit levels than men. The mean for healthy women is 

42%, with a standard deviation of 3%. Suppose we want to test the null hypothesis that Alice is 

healthy. What are the hematocrit readings above which and below which Alice’s test result would 

be considered significant at the .05 level? 

 

5. Among healthy people, the mean (fasting) blood glucose level is 90 mg/dL, with a standard 

deviation of 9 mg/dL. What are the levels at the high and low end of the 95.4% confidence interval? 

Recently, I had my blood tested and got a result of 100 mg/dL. Is this result significant at the .05 

level? My result was flagged as being potentially indicative of my being “pre-diabetic” (high blood 

glucose is a marker for diabetes). My doctor said this is a new standard, since diabetes is on the 

rise lately, but I shouldn’t worry because I wasn’t overweight and was otherwise healthy. 

Compared to a testing regime that only flags patients outside the two standard-deviation 

confidence interval, does this new practice of flagging results at 100 mg/dL increase or decrease 

the sensitivity of the diabetes screening? Does it increase or decrease its specificity? 

 

6. A stroke is when blood fails to reach a part of the brain because of an obstruction of a blood 

vessel. Often the obstruction is due to atherosclerosis—a hardening/narrowing of the arteries from 

plaque buildup. Strokes can be really bad, so it would be nice to predict them. Recent research has 

sought for a potentially predictive biomarker, and one study found that among stroke victims there 

was an unusually high level of an enzyme called myeloperoxidase: the mean was 583 pmol/L, with 

a standard deviation of 48 pmol/L.50 Suppose we wanted to devise a screening test on the basis of 

                                                 
50 See this study: https://www.ncbi.nlm.nih.gov/pubmed/21180247 

https://www.ncbi.nlm.nih.gov/pubmed/21180247
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this data. To guarantee that we caught 99.7% of potential stroke victims, what range of 

myeloperoxidase levels should get a “positive” test result? If the mean level of myeloperoxidase 

among healthy people is 425 pmol/L, with a standard deviation of 36 pmol/L, approximately what 

percentage of healthy people will get a positive result from our proposed screening test? 

 

7. I survey a sample of 1,000 Americans (assume it’s representative) and 43% of them report that 

they believe God created human beings in their present form less than 10,000 years ago.51 At the 

95% confidence level, what is the range within which the true percentage probably lies? 

 

8. Volunteer members of Mothers Against Drunk Driving conducted a door-to-door survey in a 

college dormitory on a Saturday night, and discovered that students drink and average of two 

alcoholic beverages per week. What are some reasons to doubt the results of this survey? 

 

 

V.  How to Lie with Statistics52
 

 

The basic grounding in fundamental statistical concepts and techniques provided in the last section 

gives us the ability to understand and analyze statistical arguments. Since real-life examples of 

such arguments are so often manipulative and misleading, our aim in this section is to build on the 

foundation of the last by examining some of the most common statistical fallacies—the bad 

arguments and deceptive techniques used to try to bamboozle us with numbers. 

 

Impressive Numbers without Context 

 

I’m considering buying a new brand of shampoo. The one I’m looking at promises “85% more 

body”. That sounds great to me (I’m pretty bald; I can use all the extra body I can get). But before 

I make my purchase, maybe I should consider the fact that the shampoo bottle doesn’t answer this 

simple follow-up question: 85% more body than what? The bottle does mention that the 

formulation inside is “new and improved”. So maybe it’s 85% more body than the unimproved 

shampoo? Or possibly they mean that their shampoo gives hair 85% more body than their 

competitors’. Which competitor, though? The one that does the best at giving hair more body? The 

one that does the worst? The average of all the competing brands? Or maybe it’s 85% more body 

than something else entirely. I once had a high school teacher who advised me to massage my 

scalp for 10 minutes every day to prevent baldness (I didn’t take the suggestion; maybe I should 

have). Perhaps this shampoo produces 85% more body that daily 10-minute massages. Or maybe 

it’s 85% more body than never washing your hair at all. And just what is “body” anyway? How is 

it quantified and measured? Did they take high-precision calipers and systematically gauge the 

widths of hairs? Or is it more a function of coverage—hairs per square inch of scalp surface area?  

 

The sad fact is, answers to these questions are not forthcoming. The claim that the shampoo will 

give my hair 85% more body sounds impressive, but without some additional information for me 

to contextualize that claim, I have no idea what it means. This is a classic rhetorical technique: 

                                                 
51 See this suevey: http://www.gallup.com/poll/27847/Majority-Republicans-Doubt-Theory-Evolution.aspx 
52 The title of this section, a lot of the topics it discusses, and even some of the examples it uses, are taken from Huff 

1954. 

http://www.gallup.com/poll/27847/Majority-Republicans-Doubt-Theory-Evolution.aspx
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throw out a large number to impress your audience, without providing the context necessary for 

them to evaluate whether or not your claim is actually all that impressive. Usually, on closer 

examination, it isn’t. Advertisers and politicians use this technique all the time. 

 

In the spring of 2009, the economy was in really bad shape (the fallout from the financial crisis 

that began in the fall of the year before was still being felt; stock market indices didn’t hit their 

bottom until March 2009, and the unemployment rate was still on the rise). Barack Obama, the 

newly inaugurated president at the time, wanted to send the message to the American people that 

he got it: households were cutting back on their spending because of the recession, and so the 

government would do the same thing.53 After his first meeting with his cabinet (the Secretaries of 

Defense, State, Energy, etc.), he held a press conference in which he announced that he had ordered 

each of them to cut $100 million from their agencies’ budgets. He had a great line to go with the 

announcement: “$100 million there, $100 million here—pretty soon, even here in Washington, it 

adds up to real money.” Funny. And impressive-sounding. $100 million is a hell of a lot of money! 

At least, it’s a hell of a lot of money to me. I’ve got—give me a second while I check—$64 in my 

wallet right now. I wish I had $100 million. But of course my personal finances are the wrong 

context in which to evaluate the president’s announcement. He’s talking about cutting from the 

federal budget; that’s the context. How big is that? In 2009, it was a little more the $3 trillion. 

There are fifteen departments that the members of the cabinet oversee. The cut Obama ordered 

amounted to $1.5 billion, then. That’s .05% of the federal budget. That number’s not sounding as 

impressive now that we put it in the proper context. 

 

2009 provides another example of this technique. Opponents of the Affordable Care Act 

(“Obamacare”) complained about the length of the bill: they repeated over and over that it was 

1,000 pages long. That complaint dovetailed nicely with their characterization of the law as a 

boondoggle and a government takeover of the healthcare system. 1,000 pages sure sounds like a 

lot of pages. This book comes in under 250 pages; imagine if it were 1,000! That would be up 

there with notoriously long books like War and Peace, Les Miserable, and Infinite Jest. It’s long 

for a book, but is it a lot of pages for a piece of federal legislation? Well, it’s big, but certainly not 

unprecedented. That year’s stimulus bill was about the same length. President Bush’s 2007 budget 

bill was just shy of 1,500 pages.54 His No Child Left Behind bill clocks in at just shy of 700. The 

fact is, major pieces of legislation have a lot of pages. The Affordable Care Act was not especially 

unusual. 

 

Misunderstanding Error 

 

As we discussed, built in to the logic of sampling is a margin of error. It is true of measurement 

generally that random error is unavoidable: whether you’re measuring length, weight, velocity, or 

whatever, there are inherent limits to the precision and accuracy with which our instruments can 

measure things. Measurement errors are built in to the logic of scientific practice generally; they 

                                                 
53 This sounds good, but it’s bad macroeconomics. Most economists agree that during a downturn like that one, the 

government should borrow and spend more, not less, in order to stimulate the economy. The president knew this; he 

ushered a huge government spending bill through Congress (The American Reinvestment and Recovery Act) later 

that year. 
54 This is a useful resource: http://www.slate.com/articles/news_and_politics/explainer/2009/08/paper_weight.html 

http://www.slate.com/articles/news_and_politics/explainer/2009/08/paper_weight.html
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must be accounted for. Failure to do so—or intentionally ignoring error—can produce misleading 

reports of findings. 

 

This is particularly clear in the case of public opinion surveys. As we saw, the results of such polls 

are not the precise percentages that are often reported, but rather ranges of possible percentages 

(with those ranges only being reliable at the 95% confidence level, typically). And so to report the 

results of a survey, for example, as “29% of Americans believe is Bigfoot”, is a bit misleading 

since it leaves out the margin of error and the confidence level. A worse sin is committed (quite 

commonly) when comparisons between percentages are made and the margin of error is omitted. 

This is typical in politics, when the levels of support for two contenders for an office are being 

measured. A typical newspaper headline might report something like this: “Trump Surges into the 

Lead over Clinton in Latest Poll, 44% to 43%”. This is a sexy headline: it’s likely to sell papers 

(or, nowadays, generate clicks), both to (happy) Trump supporters and (alarmed) Clinton 

supporters. But it’s misleading: it suggests a level of precision, a definitive result, that the data 

simply do not support. Let’s suppose that the margin of error for this hypothetical poll was 3%. 

What the survey results actually tell us, then, is that (at the 95% confidence level) the true level of 

support for Trump in the general population is somewhere between 41% and 47%, while the true 

level of support for Clinton is somewhere between 40% and 46%. Those data are consistent with 

a Trump lead, to be sure; but they also allow for a commanding 46% to 41% lead for Clinton. The 

best we can say is that it’s slightly more likely that Trump’s true level of support is higher than 

Clinton’s (at least, we’re pretty sure; 95% confidence interval and all). When differences are 

smaller than the margin of error (really, twice the margin of error when comparing two numbers), 

they just don’t mean very much. That’s a fact that headline-writers typically ignore. This gives 

readers a misleading impression about the certainty with which the state of the race can be known. 

 

Early in their training, scientists learn that they cannot report values that are smaller than the error 

attached to their measurements. If you weigh some substance, say, and then run an experiment in 

which it’s converted into a gas, you can plug your numbers into the ideal gas law and punch them 

into your calculator, but you’re not allowed to report all the numbers that show up after the decimal 

place. The number of so-called “significant digits” (or sometimes “figures”) you can use is 

constrained by the size of the error in your measurements. If you can only know the original weight 

to within .001 grams, for example, then even though the calculator spits out .4237645, you can 

only report a result using three significant digits—.424 after rounding. 

 

The more significant digits you report, the more precise you imply your measurement is. This can 

have the rhetorical effect of making your audience easier to persuade. Precise numbers are 

impressive; they give people the impression that you really know what you’re talking about, that 

you’ve done some serious quantitative analytical work. Suppose I ask 1,000 college students how 

much sleep they got last night.55 I add up all the numbers and divide by 1,000, and my calculator 

gives me 7.037 hours. If I went around telling people that I’d done a study that showed that the 

average college student gets 7.037 hours of sleep per night, they’d be pretty impressed: my 

research methods were so thorough that I can report sleep times down to the thousandths of an 

hour. They’ve probably got a mental picture of my laboratory, with elaborate equipment hooked 

up to college students in beds, measuring things like rapid eye movement and breathing patterns 

to determine the precise instants at which sleep begins and ends. But I have no such laboratory. I 

                                                 
55 This example inspired by Huff 1954, pp. 106 - 107. 
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just asked a bunch of people. Ask yourself: how much sleep did you get last night? I got about 9 

hours (it’s the weekend). The key word in that sentence is ‘about’. Could it have been a little bit 

more or less than 9 hours? Could it have been 9 hours and 15 minutes? 8 hours and 45 minutes? 

Sure. The error on any person’s report of how much they slept last night is bound to be something 

like a quarter of an hour. That means that I’m not entitled to those 37 thousandths of an hour that 

I reported from my little survey. The best I can do is say that the average college student gets about 

7 hours of sleep per night, plus or minus 15 minutes or so. 7.037 is precise, but the precision of 

that figure is spurious (not genuine, false).  

 

Ignoring the error attached to measurements can have profound real-life effects. Consider the 2000 

U.S. presidential election. George W. Bush defeated Al Gore that year, and it all came down to the 

state of Florida, where the final margin of victory (after recounts were started, then stopped, then 

started again, then finally stopped by order of the Supreme Court of the United States) was 327 

votes. There were about 6 million votes cast in Florida that year. The margin of 327 is about .005% 

of the total. Here’s the thing: counting votes is a measurement like any other; there is an error 

attached to it. You may remember that in many Florida counties, they were using punch-card 

ballots, where voters indicate their preference by punching a hole through a perforated circle in 

the paper next to their candidate’s name. Sometimes, the circular piece of paper—a so-called 

“chad”—doesn’t get completely detached from the ballot, and when that ballot gets run through 

the vote-counting machine, the chad ends up covering the hole and a non-vote is mistakenly 

registered. Other types of vote-counting methods—even hand-counting56—have their own error. 

And whatever method is used, the error is going to be greater than the .005% margin that decided 

the election. As one prominent mathematician put it, “We’re measuring bacteria with a 

yardstick.”57 That is, the instrument we’re using (counting, by machine or by hand) is too crude to 

measure the size of the thing we’re interested in (the difference between Bush and Gore). He 

suggested they flip a coin to decide Florida. It’s simply impossible to know who won that election. 

 

In 2011, newly elected Wisconsin Governor Scott Walker, along with his allies in the state 

legislature, passed a budget bill that had the effect, among other things, of cutting the pay of public 

sector employees by a pretty significant amount. There was a lot of uproar; you may have seen the 

protests on the news. People who were against the bill made their case in various ways. One of the 

lines of attack was economic: depriving so many Wisconsin residents of so much money would 

damage the state’s economy and cause job losses (state workers would spend less, which would 

hurt local businesses’ bottom lines, which would cause them to lay off their employees). One 

newspaper story at the time quoted a professor of economics who claimed that the Governor’s bill 

would cost the state 21,843 jobs.58 Not 21, 844 jobs; it’s not that bad. Only 21,843. This number 

sounds impressive; it’s very precise. But of course that precision is spurious. Estimating the 

economic effects of public policy is an extremely uncertain business. I don’t know what kind of 

model this economist was using to make his estimate, but whatever it was, it’s impossible for its 

results to be reliable enough to report that many significant digits. My guess is that at best the 2 in 

21,843 has any meaning at all. 

 

                                                 
56 It may be as high as 2% for hand-counting! See here: 

 https://www.sciencedaily.com/releases/2012/02/120202151713.htm 
57 John Paulos, “We’re Measuring Bacteria with a Yardstick,” November 22, 2000, The New York Times. 
58 Steven Verburg, “Study: Budget Could Hurt State’s Economy,” March 20, 2011, Wisconsin State Journal. 

https://www.sciencedaily.com/releases/2012/02/120202151713.htm
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Tricky Percentages 

 

Statistical arguments are full of percentages, and there are lots of ways you can fool people with 

them. The key to not being fooled by such figures, usually, is to keep in mind what it’s a percentage 

of. Inappropriate, shifting, or strategically chosen numbers can give you misleading percentages. 

 

When the numbers are very small, using percentages instead of fractions is misleading. Johns 

Hopkins Medical School, when it opened in 1893, was one of the few medical schools that allowed 

women to matriculate.59 In those benighted times, people worried about women enrolling in 

schools with men for a variety of silly reasons. One of them was the fear that the impressionable 

young ladies would fall in love with their professors and marry them. Absurd, right? Well, maybe 

not: in the first class to enroll at the school, 33% of the women did indeed marry their professors! 

The sexists were apparently right. That figure sounds impressive, until you learn that the 

denominator is 3. Three women enrolled at Johns Hopkins that first year, and one of them married 

her anatomy professor. Using the percentage rather than the fraction exaggerates in a misleading 

way. Another made up example: I live in a relatively safe little town. If I saw a headline in my 

local newspaper that said “Armed Robberies are Up 100% over Last Year” I would be quite 

alarmed. That is, until I realized that last year there was one armed robbery in town, and this year 

there were two. That is a 100% increase, but using the percentage of such a small number is 

misleading. 

 

You can fool people by changing the number you’re taking a percentage of mid-stream. Suppose 

you’re an employee at my aforementioned LogiCorp. You evaluate arguments for $10.00 per hour. 

One day, I call all my employees together for a meeting. The economy has taken a turn for the 

worse, I announce, and we’ve got fewer arguments coming in for evaluation; business is slowing. 

I don’t want to lay anybody off, though, so I suggest that we all share the pain: I’ll cut everybody’s 

pay by 20%; but when the economy picks back up, I’ll make it up to you. So you agree to go along 

with this plan, and you suffer through a year of making a mere $8.00 per hour evaluating 

arguments. But when the year is up, I call everybody together and announce that things have been 

improving and I’m ready to set things right: starting today, everybody gets a 20% raise. First a 

20% cut, now a 20% raise; we’re back to where we were, right? Wrong. I changed numbers mid-

stream. When I cut your pay initially, I took twenty percent of $10.00, which is a reduction of 

$2.00. When I gave you a raise, I gave you twenty percent of your reduced pay rate of $8.00 per 

hour. That’s only $1.60. Your final pay rate is a mere $9.60 per hour.60 

 

Often, people make a strategic decision about what number to take a percentage of, choosing the 

one that gives them a more impressive-sounding, rhetorically effective figure. Suppose I, as the 

CEO of LogiCorp, set an ambitious goal for the company over the next year: I propose that we 

increase our productivity from 800 arguments evaluated per day to 1,000 arguments per day. At 

the end of the year, we’re evaluating 900 arguments per day. We didn’t reach our goal, but we did 

make an improvement. In my annual report to investors, I proclaim that we were 90% successful. 

That sounds good; 90% is really close to 100%. But it’s misleading. I chose to take a percentage 

of 1,000: 900 divided by 1,000 give us 90%. But is that the appropriate way to measure the degree 

                                                 
59 Not because the school’s administration was particularly enlightened. They could only open with the financial 

support of four wealthy women who made this a condition for their donations. 
60 This example inspired by Huff 1954, pp. 110 - 111. 
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to which we met the goal? I wanted to increase our production from 800 to 1,000; that is, I wanted 

a total increase of 200 arguments per day. How much of an increase did we actually get? We went 

from 800 up to 900; that’s an increase of 100. Our goal was 200, but we only got up to 100. In 

other words, we only got to 50% of our goal. That doesn’t sound as good. 

 

Another case of strategic choices. Opponents of abortion rights might point out that 97% of 

gynecologists in the United States have had patients seek abortions. This creates the impression 

that there’s an epidemic of abortion-seeking, that it happens regularly. Someone on the other side 

of the debate might point out that only 1.25% of women of childbearing age get an abortion each 

year. That’s hardly an epidemic. Each of the participants in this debate has chosen a convenient 

number to take a percentage of. For the anti-abortion activist, that is the number of gynecologists. 

It’s true that 97% have patients who seek abortions; only 14% of them actually perform the 

procedure, though. The 97% exaggerates the prevalence of abortion (to achieve a rhetorical effect). 

For the pro-choice activist, it is convenient to take a percentage of the total number of women of 

childbearing age. It’s true that a tiny fraction of them get abortions in a given year; but we have to 

keep in mind that only a small percentage of those women are pregnant in a given year. As a matter 

of fact, among those that actually get pregnant, something like 17% have an abortion. The 1.25% 

minimizes the prevalence of abortion (again, to achieve a rhetorical effect). 

 

The Base-Rate Fallacy 

 

The base rate is the frequency with which some kind of event occurs, or some kind of phenomenon 

is observed. When we ignore this information, or forget about it, we commit a fallacy and make 

mistakes in reasoning. 

 

Most car accidents occur in broad daylight, at low speeds, and close to home. So does that mean 

I’m safer if I drive really fast, at night, in the rain, far away from my house? Of course not. Then 

why are there more accidents in the former conditions? The base rates: much more of our driving 

time is spent at low speeds, during the day, and close to home; relatively little of it is spent driving 

fast at night, in the rain and far from home.61 

 

Consider a woman formerly known as Mary (she changed her name to Moon Flower). She’s a 

committed pacifist, vegan, and environmentalist; she volunteers with Green Peace; her favorite 

exercise is yoga. Which is more probable: that she’s a best-selling author of new-age, alternative-

medicine, self-help books—or that she’s a waitress? If you answered that she’s more likely to be 

a best-selling author of self-help books, you fell victim to the base-rate fallacy. Granted, Moon 

Flower fits the stereotype of the kind of person who would be the author of such books perfectly. 

Nevertheless, it’s far more probable that a person with those characteristics would be a waitress 

than a best-selling author. Why? Base rates. There are far, far (far!) more waitresses in the world 

than best-selling authors (of new-age, alternative-medicine, self-help books). The base rate of 

waitressing is higher than that of best-selling authorship by many orders of magnitude.  

 

Suppose there’s a medical screening test for a serious disease that is very accurate: it only produces 

false positives 1% of the time, and it only produces false negatives 1% of the time (it’s highly 

                                                 
61 This example inspired by Huff 1954, pp. 77 - 79. 
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sensitive and highly specific). The disease is serious, but rare: it only occurs in 1 out of every 

100,000 people. Suppose you get screened for this disease and your result is positive; that is, you’re 

flagged as possibly having the disease. Given what we know, what’s the probability that you’re 

actually sick? It’s not 99%, despite the accuracy of the test. It’s much lower. And I can prove it, 

using our old friend Bayes’ Law. The key to seeing why the probability is much lower than 99%, 

as we shall see, is taking the base rate of the disease into account. 

 

There are two hypotheses to consider: that you’re sick (call it ‘S’) and that you’re not sick (~ S). 

The evidence we have is a positive test result (P). We want to know the probability that you’re 

sick, given this evidence: P(S | P). Bayes’ Law tells us how to calculate this: 

 

                                                            P(S) x P(P | S) 

P(S | P)  =   

                      P(S) x P(P | S) + P(~ S) x P(P | ~ S) 

 

The base rate of the sickness is the rate at which it occurs in the general population. It’s rare: it 

only occurs in 1 out of 100,000 people. This number corresponds to the prior probability for the 

sickness in our formula—P(S). We have to multiply in the numerator by 1/100,000; this will have the 

effect of keeping down the probability of sickness, even given the positive test result. What about 

the other terms in our equation? ‘P(~ S)’ just picks out the prior probability of not being sick; if 

P(S) = 1/100,000, then P(~ S) = 99,999/100,000. ‘P(P | S)’ is the probability that you would get a positive 

test result, assuming you were in fact sick. We’re told that the test is very accurate: it only tells 

sick people that they’re healthy 1% of the time (1% rate of false negatives); so the probability that 

a sick person would get a positive test result is 99%—P(P | S) = .99. ‘P(P | ~ S)’ is the probability 

that you’d get a positive result if you weren’t sick. That’s the rate of false positives, which is 1%—

P(P | ~ S) = .01. Plugging these numbers into the formula, we get the result that P(S | P) = .000999. 

That’s right, given a positive result from this very-accurate screening test, you’re probability of 

being sick is just under 1/10,000. The test is accurate, but the disease is so rare (its base rate is so 

low) that your chances of being sick are still very low even after a positive result. 

 

Sometimes people will ignore base rates on purpose to try to fool you. Did you know that marijuana 

is more dangerous than heroin? Neither did I. But look at this chart: 
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That graphic published in a story in USA Today under the headline “Marijuana poses more risks 

than many realize.”62 The chart/headline combo create an alarming impression: if so many more 

people are going to the emergency room because of marijuana, it must be more dangerous than I 

realized. Look at that: more than twice as many emergency room visits for pot than heroin; it’s 

almost as bad as cocaine! Or maybe not. What this chart ignores is the base rates of marijuana-, 

cocaine-, and heroin-use in the population. Far (far!) more people use marijuana than use heroin 

or cocaine. A truer measure of the relative dangers of the various drugs would be the number of 

emergency room visits per user. That gives you a far different chart:63 

 

                                                 
62 Liz Szabo, “Marijuana poses more risks than many realize,” July 27, 2014, USA Today. 

http://www.usatoday.com/story/news/nation/2014/07/27/risks-of-marijuana/10386699/?sf29269095=1 
63 From German Lopez, “Marijuana sends more people to the ER than heroin. But that's not the whole story.” August 

2, 2014, Vox.com. http://www.vox.com/2014/8/2/5960307/marijuana-legalization-heroin-USA-Today 

http://www.usatoday.com/story/news/nation/2014/07/27/risks-of-marijuana/10386699/?sf29269095=1
http://www.vox.com/2014/8/2/5960307/marijuana-legalization-heroin-USA-Today
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Lying with Pictures 

 

Speaking of charts, they are another tool that can be used (abused) to make dubious statistical 

arguments. We often use charts and other pictures to graphically convey quantitative information. 

But we must take special care that our pictures accurately depict that information. There are all 

sorts of ways in which graphical presentations of data can distort the actual state of affairs and 

mislead our audience. 

 

Consider, once again, my fictional company, LogiCorp. Business has been improving lately, and 

I’m looking to get some outside investors so I can grow even more quickly. So I decide to go on 

that TV show Shark Tank. You know, the one with Mark Cuban and panel of other rich people, 

where you make a presentation to them and they decide whether or not your idea is worth investing 

in. Anyway, I need to plan a persuasive presentation to convince one of the sharks to give me a 
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whole bunch of money for LogiCorp. I’m going to use a graph to impress them with company’s 

potential for future growth. Here’s a graph of my profits over the last decade: 

 

 
Not bad. But not great, either. The positive trend in profits is clearly visible, but it would be nice 

if I could make it look a little more dramatic. I’ll just tweak things a bit: 

 

 
 

Better. All I did was adjust the y-axis. No reason it has to go all the way down to zero and up to 

240. Now the upward slope is accentuated; it looks like LogiCorp is growing more quickly. 

But I think I can do even better. Why does the x-axis have to be so long? If I compressed the graph 

horizontally, my curve would slope up even more dramatically: 
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Now that’s explosive growth! The sharks are gonna love this. Well, that is, as long as they don’t 

look too closely at the chart. Profits on the order of $1.80 per year aren’t going to impress a 

billionaire like Mark Cuban. But I can fix that: 

 
 

There. For all those sharks know, profits are measure in the millions of dollars. Of course, for all 

my manipulations, they can still see that profits have increased 400% over the decade. That’s pretty 
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good, of course, but maybe I can leave a little room for them to mentally fill in more impressive 

numbers: 

 
 

That’s the one. Soaring profits, and it looks like they started close to zero and went up to—well, 

we can’t really tell. Maybe those horizontal lines go up in increments of 100, or 1,000. LogiCorp’s 

profits could be unimaginably high.  

 

People manipulate the y-axis of charts for rhetorical effect all the time. In their “Pledge to 

America” document of 2010, the Republican Party promised to pursue various policy priorities if 

they were able to achieve a majority in the House of Representatives (which they did). They 

included the following chart in that diagram to illustrate that government spending was out of 

control: 
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Writing for New Republic, Alexander Hart pointed out that the Republicans’ graph, by starting the 

y-axis at 17% and only going up to 24%, exaggerates the magnitude of the increase. That bar on 

the right is more than twice as big as the other two, but federal spending hadn’t doubled. He 

produced the following alternative presentation of the data64: 

 
 

Writing for The Washington Post, liberal blogger Ezra Klein passed along the original graph and 

the more “honest” one. Many of his commenters (including your humble author) pointed out that 

the new graph was an over-correction of the first: it minimizes the change in spending by taking 

the y-axis all the way up to 100. He produced a final graph that’s probably the best way to present 

the spending data65: 

 

 

                                                 
64 Alexander Hart, “Lying With Graphs, Republican Style (Now Featuring 50% More Graphs),” December 22, 2010, 

New Republic. https://newrepublic.com/article/77893/lying-graphs-republican-style 
65 Ezra Klein, “Lies, damn lies, and the 'Y' axis,” September 23, 2010, The Washington Post. 

http://voices.washingtonpost.com/ezra-klein/2010/09/lies_damn_lies_and_the_y_axis.html 

https://newrepublic.com/article/77893/lying-graphs-republican-style
http://voices.washingtonpost.com/ezra-klein/2010/09/lies_damn_lies_and_the_y_axis.html
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One can make mischief on the x-axis, too. In an April 2011 editorial entitled “Where the Tax 

Money Is”, The Wall Street Journal made the case that President Obama’s proposal to raise taxes 

on the rich was a bad idea.66 If he was really serious about raising revenue, he would have to raise 

taxes on the middle class, since that’s where most of the money is. To back up that claim, they 

produced this graph: 

 

 
 

This one is subtle. What they present has the appearance of a histogram, but it breaks one of the 

rules for such charts: each of the bars has to represent the same portion of the population. That’s 

not even close to the case here. To get their tall bars in the middle of the income distribution, the 

Journal’s editorial board groups together incomes between $50 and $75 thousand, $75 and $100 

thousand, then $100 and $200 thousand, and so on. There are far (far!) more people (or probably 

households; that’s how these data are usually reported) in those income ranges than there are in, 

say, the range between $20 and $25 thousand, or $5 to $10 million—and yet those ranges get their 

own bars, too. That’s just not how histograms work. Each bar in an income distribution chart would 

have to contain the same number of people (or households). When you produce such a histogram, 

you see what the distribution really looks like (these data are from a different tax year, but the 

basic shape of the graph didn’t change during the interim): 

 

                                                 
66 See here: http://www.wsj.com/articles/SB10001424052748704621304576267113524583554 

http://www.wsj.com/articles/SB10001424052748704621304576267113524583554
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Using The Wall Street Journal’s method of generating histograms—where each bar can represent 

any number of different households—you can “prove” anything you like. It’s not the rich or even 

the middle class we should go after if we really want to raise revenue; it’s the poor. That’s where 

the money is: 

 

 
 

There are other ways besides charts and graphs to visually present quantitative information: 

pictograms. There’s a sophisticated and rule-based method for representing statistical information 

using such pictures. It was pioneered in the 1920s by the Austrian philosopher Otto Neurath, and 

was originally called the Vienna Method of Pictorial Statistics (Wiener Methode der Bildstatistik); 

eventually it came to be known as Isotype (International System of TYpographic Picture 
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Education).67 The principles of Neurath’s system were such as to prevent the misrepresentation of 

data with pictograms. Perhaps the most important rule is that greater quantities are to be 

represented not by larger pictures, but by greater numbers of same-sized pictures. So, for instance, 

if I wanted to represent the fact that domestic oil production in the United States has doubled over 

the past several years, I could use the following depiction68: 

 

                                      
 

                     THEN                                                                   NOW 

 
It would be misleading to flout Neurath’s principles and instead represent the increase with a larger 

barrel: 

 

                                                
 

                       THEN                                                                  NOW 

 
All I did was double the size of the image. But I doubled it in both dimensions: it’s both twice as 

wide and twice as tall. Moreover, since oil barrels are three dimensional objects, I’ve also depicted 

a barrel on the right that’s twice as deep. The important thing about oil barrels is how much oil 

they can hold—their volume. By doubling the barrel in all three dimensions, I’ve depicted a barrel 

on the right that can hold 8 times as much oil as the one on the left. What I’m showing isn’t a 

doubling of oil production; it’s an eight-fold increase.  

                                                 
67 See here: https://en.wikipedia.org/wiki/Isotype_(picture_language) 
68 I’ve been using this example in class for years, and something tells me I got it from somebody else’s book, but 

I’ve looked through all the books on my shelves and can’t find it. So maybe I made it up myself. But if I didn’t, this 

footnote acknowledges whoever did. (If you’re that person, let me know!) 

https://en.wikipedia.org/wiki/Isotype_(picture_language)
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Alas, people break Neurath’s rules all the time, and end up (intentionally or not) exaggerating the 

phenomena they’re trying to depict. Matthew Yglesias, writing in Architecture magazine, made 

the point that the housing “bubble” that reached full inflation in 2006 (when lots of homes were 

built) was not all that unusual. If you look at recent history, you see similar cycles of boom and 

bust, with periods of lots of building followed by periods of relatively little. The magazine 

produced a graphic to present the data on home construction, and Yglesias made a point to post it 

on his blog at Slate.com because he thought it was illustrative.69 Here’s the graphic: 

 

 
 

It’s a striking figure, but it exaggerates the swings it’s trying to depict. The picograms are scaled 

to the numbers in the little houses (which represent the number of homes built in the given months), 

but in both dimensions. And of course houses are three-dimensional objects, so that even though 

the picture doesn’t depict the thrid dimension, our unconscious mind knows that these little 

domisciles have volume. So the Jan. 2006 house (2,273) is more than five times wider and higher 

than the April 2009 house (478). But five times in three dimensions: 5 x 5 x 5 = 125. The Jan. 

2006 house is over 125 times larger than the April 2009 house; that’s why it looks like we have a 

mansion next to a shed. There were swings in housing construction over the years, but they weren’t 

as large as this graphic makes them seem. 

 

One ubiquitous picture that’s easy to misinterpret, not because anybody broke Neurath’s rules, but 

simply because of how things happen to be in the world, is the map of the United States. What 

makes it tricky is that the individual states’ sizes are not proportional to their populations. This has 

the effect of exaggerating certain phenomena. Consider the final results of the 2016 presidential 

election, pictured, as they normally are, with states that went for the Republican candidate in red 

and those that went for the Democrat in blue. This is what you get70: 

 

                                                 
69 See here: http://www.slate.com/blogs/moneybox/2011/12/23/america_s_housing_shortage.html 
70 Source of image: https://en.wikipedia.org/wiki/Electoral_College_(United_States) 

http://www.slate.com/blogs/moneybox/2011/12/23/america_s_housing_shortage.html
https://en.wikipedia.org/wiki/Electoral_College_(United_States)
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Look at all that red! Clinton apparently got trounced. Except she didn’t: she won the popular vote 

by more than three million. It looks like there are a lot more Trump votes because he won a lot of 

states that are very large but contain very few voters. Those Great Plains states are huge, but hardly 

anybody lives up there. If you were to adjust the map, making the states’ sizes proportional to their 

populations, you’d end up with something like this71: 

 

 
 

And this is only a partial correction: this sizes the states by electors in the Electoral College; that 

still exaggerates the sizes of some of those less-populated states. A true adjustment would have to 

show more blue than red, since Clinton won more votes overall. 

                                                 
71 Ibid. 
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I’ll finish with an example stolen directly from the inspiration for this section—Darrell Huff’s 

How to Lie with Statistics.72 It is a map of the United States made to raise alarm over the amount 

of spending being done by the federal government (it was produced over half a century ago; some 

things never change). Here it is: 

 

The Darkening Shadow 

Federal Spending = Incomes of All People in Shaded States 
 

 
 

That makes it look like federal spending is the equivalent of half the country’s incomes! But Huff 

produced his own map (“Eastern style”), shading different states, same total population: 

 

 
 

Not nearly so alarming.  

 

People try to fool you in so many different ways. The only defense is a little logic, and a whole lot 

of skepticism. Be vigilant! 

                                                 
72 p. 103. 
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